867 resultados para Graph-based method


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background. IGF2 and H19 are reciprocal imprinted genes with paternal and maternal monoallelic expression, respectively. This is interesting, because IGF2 is known as a growth factor, and H19 encodes a RNA with putative tumor suppressor action. Furthermore, IGF2 and H19 are linked genes located on chromosome 11p15.5, a common site of loss of heterozygosity in human cancers.Methods. We performed an allelic-typing assay using a PCR-RFLP-based method for identification of heterozygous Informative cases in head and neck squamous cell carcinomas. Tumoral total RNA was extracted from each of the heterozygotes and further studied by RT-PCR analysis.Results. We detected the expression of the IGF2 gene in 10 of 10 informative cases. Two cases exhibited LOI of the IGF2 gene as evidenced by biallelic expression, and in another case, LOH was coupled with monoallelic expression of this growth factor. LOI for the H19 gene was observed in 1 of 14 informative samples analyzed. In this case, we also detected parallel mono-allelic expression of the IGF2 gene. Down-regulation of the H19 gene was observed in 10 of 14 cases.Conclusion. These findings support the hypothesis that H19 may be a tumor suppressor gene involved In head and neck carcinogenesis. Furthermore, our data showed that genetic and epigenetic chances at 11p15.5 could lead to abnormal expression of imprinted genes in HNSCC. (C) 2001 John Wiley & Sons, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper addresses biometric identification using large databases, in particular, iris databases. In such applications, it is critical to have low response time, while maintaining an acceptable recognition rate. Thus, the trade-off between speed and accuracy must be evaluated for processing and recognition parts of an identification system. In this paper, a graph-based framework for pattern recognition, called Optimum-Path Forest (OPF), is utilized as a classifier in a pre-developed iris recognition system. The aim of this paper is to verify the effectiveness of OPF in the field of iris recognition, and its performance for various scale iris databases. The existing Gauss-Laguerre Wavelet based coding scheme is used for iris encoding. The performance of the OPF and two other - Hamming and Bayesian - classifiers, is compared using small, medium, and large-scale databases. Such a comparison shows that the OPF has faster response for large-scale databases, thus performing better than the more accurate, but slower, classifiers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Majority of biometric researchers focus on the accuracy of matching using biometrics databases, including iris databases, while the scalability and speed issues have been neglected. In the applications such as identification in airports and borders, it is critical for the identification system to have low-time response. In this paper, a graph-based framework for pattern recognition, called Optimum-Path Forest (OPF), is utilized as a classifier in a pre-developed iris recognition system. The aim of this paper is to verify the effectiveness of OPF in the field of iris recognition, and its performance for various scale iris databases. This paper investigates several classifiers, which are widely used in iris recognition papers, and the response time along with accuracy. The existing Gauss-Laguerre Wavelet based iris coding scheme, which shows perfect discrimination with rotary Hamming distance classifier, is used for iris coding. The performance of classifiers is compared using small, medium, and large scale databases. Such comparison shows that OPF has faster response for large scale database, thus performing better than more accurate but slower Bayesian classifier.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The increase of computing power of the microcomputers has stimulated the building of direct manipulation interfaces that allow graphical representation of Linear Programming (LP) models. This work discusses the components of such a graphical interface as the basis for a system to assist users in the process of formulating LP problems. In essence, this work proposes a methodology which considers the modelling task as divided into three stages which are specification of the Data Model, the Conceptual Model and the LP Model. The necessity for using Artificial Intelligence techniques in the problem conceptualisation and to help the model formulation task is illustrated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the main problems in Computer Vision and Close Range Digital Photogrammetry is 3D reconstruction. 3D reconstruction with structured light is one of the existing techniques and which still has several problems, one of them the identification or classification of the projected targets. Approaching this problem is the goal of this paper. An area based method called template matching was used for target classification. This method performs detection of area similarity by correlation, which measures the similarity between the reference and search windows, using a suitable correlation function. In this paper the modified cross covariance function was used, which presented the best results. A strategy was developed for adaptative resampling of the patterns, which solved the problem of deformation of the targets due to object surface inclination. Experiments with simulated and real data were performed in order to assess the efficiency of the proposed methodology for target detection. The results showed that the proposed classification strategy works properly, identifying 98% of targets in plane surfaces and 93% in oblique surfaces.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a novel, fast and accurate appearance-based method for infrared face recognition. By introducing the Optimum-Path Forest classifier, our objective is to get good recognition rates and effectively reduce the computational effort. The feature extraction procedure is carried out by PCA, and the results are compared to two other well known supervised learning classifiers; Artificial Neural Networks and Support Vector Machines. The achieved performance asserts the promise of the proposed framework. ©2009 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper a new partial differential equation based method is presented with a view to denoising images having textures. The proposed model combines a nonlinear anisotropic diffusion filter with recent harmonic analysis techniques. A wave atom shrinkage allied to detection by gradient technique is used to guide the diffusion process so as to smooth and maintain essential image characteristics. Two forcing terms are used to maintain and improve edges, boundaries and oscillatory features of an image having irregular details and texture. Experimental results show the performance of our model for texture preserving denoising when compared to recent methods in literature. © 2009 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper aims at extracting street centerlines from previously isolated street regions by using the image of laser scanning intensity. In this image, streets are easily identified, since they manifest as dark, elongate ribbons contrasting with background objects. The intensity image is segmented by using the region growing technique, which generates regions representing the streets. From these regions, the street centerlines are extracted in two manners. The first one is through the Steger lines detection method combined with a line length thresholding by which lines being shorter than a minimum length are removed. The other manner is by combining the skeletonization method of regions based on the Medial Axis Transform and with a pruning process to eliminate as much as possible the ramifications. Experiments showed that the Steger-based method provided results better than the method based on skeletonization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Esta dissertação apresenta um método baseado em algoritmos genéticos para cálculo de equivalentes dinâmicos de sistemas de potência visando representar partes de um sistema para estudos de análise de estabilidade transitória. O modelo do equivalente dinâmico é obtido por meio da identificação de parâmetros de geradores síncronos, localizados nas barras de fronteira entre o sistema externo e o subsistema em estudo. Um indicie é usado para avaliar a proximidade entre as simulações realizadas usando o modelo completo e o modelo reduzido, após serem submetidos a grandes distúrbios no subsistema em estudo. Diferentes condições operacionais foram levadas em conta. As simulações foram realizadas usando os softwares GAOT “The Genetic Algorithm Optimization Toolbox”, ANAREDE e ANATEM. Esse método foi testado no sistema teste duas áreas do Kundur e no Sistema Interligado Nacional (SIN). Os resultados validaram a eficácia do método desenvolvido para o cálculo de equivalentes dinâmicos robustos.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Concept drift, which refers to non stationary learning problems over time, has increasing importance in machine learning and data mining. Many concept drift applications require fast response, which means an algorithm must always be (re)trained with the latest available data. But the process of data labeling is usually expensive and/or time consuming when compared to acquisition of unlabeled data, thus usually only a small fraction of the incoming data may be effectively labeled. Semi-supervised learning methods may help in this scenario, as they use both labeled and unlabeled data in the training process. However, most of them are based on assumptions that the data is static. Therefore, semi-supervised learning with concept drifts is still an open challenging task in machine learning. Recently, a particle competition and cooperation approach has been developed to realize graph-based semi-supervised learning from static data. We have extend that approach to handle data streams and concept drift. The result is a passive algorithm which uses a single classifier approach, naturally adapted to concept changes without any explicit drift detection mechanism. It has built-in mechanisms that provide a natural way of learning from new data, gradually "forgetting" older knowledge as older data items are no longer useful for the classification of newer data items. The proposed algorithm is applied to the KDD Cup 1999 Data of network intrusion, showing its effectiveness.