954 resultados para Gram-negative aerobic bacteria (Physiology)
Resumo:
Chlamydiales are obligate intracellular bacteria including some important pathogens causing trachoma, genital tract infections and pneumonia, among others. They share an atypical division mechanism, which is independent of an FtsZ homologue. However, they divide by binary fission, in a process inhibited by penicillin derivatives, causing the formation of an aberrant form of the bacteria, which is able to survive in the presence of the antibiotic. The paradox of penicillin sensitivity of chlamydial cells in the absence of detectable peptidoglycan (PG) was dubbed the chlamydial anomaly, since no PG modified by enzymes (Pbps) that are the usual target of penicillin could be detected in Chlamydiales. We review here the recent advances in this field with the first direct and indirect evidences of PG-like material in both Chlamydiaceae and Chlamydia-related bacteria. Moreover, PG biosynthesis is required for proper localization of the newly described septal proteins RodZ and NlpD. Taken together, these new results set the stage for a better understanding of the role of PG and septal proteins in the division mechanism of Chlamydiales and illuminate the long-standing chlamydial anomaly. Moreover, understanding the chlamydial division mechanism is critical for the development of new antibiotics for the treatment of chlamydial chronic infections.
Resumo:
Members of the histone-like nucleoid structuring protein (H-NS) family play roles both as architectural proteins and as modulators of gene expression in Gram-negative bacteria. The H-NS protein participates in modulatory processes that respond to environmental changes in osmolarity, pH, or temperature. H-NS oligomerization is essential for its activity. Structural models of different truncated forms are available. However, high-resolution structural details of full-length H-NS and its DNA-bound state have largely remained elusive. We report on progress in characterizing the biologically active H-NS oligomers with solid-state NMR. We compared uniformly ((13)C,(15)N)-labeled ssNMR preparations of the isolated N-terminal region (H-NS 1-47) and full-length H-NS (H-NS 1-137). In both cases, we obtained ssNMR spectra of good quality and characteristic of well-folded proteins. Analysis of the results of 2D and 3D (13)C-(13)C and (15)N-(13)C correlation experiments conducted at high magnetic field led to assignments of residues located in different topological regions of the free full-length H-NS. These findings confirm that the structure of the N-terminal dimerization domain is conserved in the oligomeric full-length protein. Small changes in the dimerization interface suggested by localized chemical shift variations between solution and solid-state spectra may be relevant for DNA recoginition.
Resumo:
Chlamydiales possess a minimal but functional peptidoglycan precursor biosynthetic and remodeling pathway involved in the assembly of the division septum by an atypical cytokinetic machine and cryptic or modified peptidoglycan-like structure (PGLS). How this reduced cytokinetic machine collectively coordinates the invagination of the envelope has not yet been explored in Chlamydiales. In other Gram-negative bacteria, peptidoglycan provides anchor points that connect the outer membrane to the peptidoglycan during constriction using the Pal-Tol complex. Purifying PGLS and associated proteins from the chlamydial pathogen Waddlia chondrophila, we unearthed the Pal protein as a peptidoglycan-binding protein that localizes to the chlamydial division septum along with other components of the Pal-Tol complex. Together, our PGLS characterization and peptidoglycan-binding assays support the notion that diaminopimelic acid is an important determinant recruiting Pal to the division plane to coordinate the invagination of all envelope layers with the conserved Pal-Tol complex, even during osmotically protected intracellular growth.
Resumo:
Marine microorganisms, including Aeromonas, are a source of compounds for drug development that have generated great expectations in the last decades. Aeromonas infections produce septicaemia, and ulcerative and haemorrhagic diseases in fish. Among the pathogenic factors associated with Aeromonas, the lipopolysaccharides (LPS), a surface glyconconjugate unique to Gram-negative bacteria consisting of lipid A (lipid anchor of the molecule), core oligosaccharide and O-specific polysaccharide (O antigen), are key elicitors of innate immune responses. The chemical structure of these three parts has been characterized in Aeromonas. Based on the high variability of repeated units of O-polysaccharides, a total of 97 O-serogroups have been described in Aeromonas species, of which four of them (O:11; O:16; O:18 and O:34) account for more than 60% of the septicemia cases. The core of LPS is subdivided into two regions, the inner (highly conserved) and the outer core. The inner core of Aeromonas LPS is characterized by the presence of 3-deoxy-D-manno-oct-2-ulosonic (ketodeoxyoctonic) acid (Kdo) and L-glycero-D-manno-Heptoses (L,D-Hep), which are linked to the outer core, characterized by the presence of Glc, GlcN, Gal, and GalNAc (in Aeromonas salmonicida), D,D-Hep (in Aeromonas salmonicida), and L,D-Hep (in Aeromonas hydrophila). The biological relevance of these differences in the distal part of the outer core among these species has not been fully assessed to date. The inner core is attached to the lipid A, a highly conserved structure that confers endotoxic properties to the LPS when the molecule is released in blood from lysed bacteria, thus inducing a major systemic inflammatory response known as septic or endotoxic shock. In Aeromonas salmonicida subsp. salmonicida the Lipid A components contain three major lipid A molecules, differing in acylation patterns corresponding to tetra-, penta- and hexaacylated lipid A species and comprising of 4′-monophosphorylated β-2-amino-2-deoxy-D-glucopyranose-(1→6)-2-amino-2-deoxy-D-glucopyranose disaccharide. In the present review, we discuss the structure-activity relationships of Aeromonas LPS, focusing on its role in bacterial pathogenesis and its possible applications.
Resumo:
Antimicrobial peptides offer a new class of therapeutic agents to which bacteria may not be able todevelop genetic resistance, since their main activity is in the lipid component of the bacterial cell mem-brane. We have developed a series of synthetic cationic cyclic lipopeptides based on natural polymyxin,and in this work we explore the interaction of sp-85, an analog that contains a C12 fatty acid at theN-terminus and two residues of arginine. This analog has been selected from its broad spectrum antibac-terial activity in the micromolar range, and it has a disruptive action on the cytoplasmic membrane ofbacteria, as demonstrated by TEM. In order to obtain information on the interaction of this analog withmembrane lipids, we have obtained thermodynamic parameters from mixed monolayers prepared withPOPG and POPE/POPG (molar ratio 6:4), as models of Gram positive and Gram negative bacteria, respec-tively. LangmuirBlodgett films have been extracted on glass plates and observed by confocal microscopy,and images are consistent with a strong destabilizing effect on the membrane organization induced bysp-85. The effect of sp-85 on the membrane is confirmed with unilamelar lipid vesicles of the same com-position, where biophysical experiments based on fluorescence are indicative of membrane fusion andpermeabilization starting at very low concentrations of peptide and only if anionic lipids are present.Overall, results described here provide strong evidence that the mode of action of sp-85 is the alterationof the bacterial membrane permeability barrier.
Resumo:
Membrane active peptides can perturb the lipid bilayer in several ways, such as poration and fusion of the target cell membrane, and thereby efficiently kill bacterial cells. We probe here the mechanistic basis of membrane poration and fusion caused by membrane-active, antimicrobial peptides. We show that the cyclic antimicrobial peptide, BPC194, inhibits growth of Gram-negative bacteria and ruptures the outer and inner membrane at the onset of killing, suggesting that not just poration is taking place at the cell envelope. To simplify the system and to better understand the mechanism of action, we performed Förster resonance energy transfer and cryogenic transmission electron microscopy studies in model membranes and show that the BPC194 causes fusion of vesicles. The fusogenic action is accompanied by leakage as probed by dual-color fluorescence burst analysis at a single liposome level. Atomistic molecular dynamics simulations reveal how the peptides are able to simultaneously perturb the membrane towards porated and fused states. We show that the cyclic antimicrobial peptides trigger both fusion and pore formation and that such large membrane perturbations have a similar mechanistic basis
Resumo:
Helicobacter pylori (H. pylori) is a gram negative bacteria that represents a considerable global burden in the world and is related to many gastrointestinal diseases (peptic ulcer, gastric MALT lymphoma or gastric cancer). Currently the triple standard therapy is less used as there is an increase of the clarithromycin resistance. Therefore patients have to receive several lines of treatment with the consequence of adverse events and the possibility to interrupt the treatment. This is why the main objective is to determine if making a culture and antibiogram to do a targeted treatment cause less adverse events with the same eradication than making an empirical treatment to eradicate H. pylori. The secondary objective is to determine the prevalence of resistance to clarithromycin in the province of GironaThis is a multicentre clinical trial without blinding; patients are selected by non-probabilistic sampling, with a total sample of 868 patients randomized in two equal groups of 434 patients in each group. The study will last 2 years. The endpoints will be to evaluate the adverse events and eradication of each group of patients. Also it will be evaluated the resistance to clarithromycin
Resumo:
Non-typable Haemophilus influenzae (NTHi) is a Gram negative pathogen that causes acute respiratory infections and is associated with the progression of chronic respiratory diseases. Previous studies have established the existence of a remarkable genetic variability among NTHi strains. In this study we show that, in spite of a high level of genetic heterogeneity, NTHi clinical isolates display a prevalent molecular feature, which could confer fitness during infectious processes. A total of 111 non-isogenic NTHi strains from an identical number of patients, isolated in two distinct geographical locations in the same period of time, were used to analyse nine genes encoding bacterial surface molecules, and revealed the existence of one highly prevalent molecular pattern (lgtF+, lic2A+, lic1D+, lic3A+, lic3B+, siaA−, lic2C+, ompP5+, oapA+) displayed by 94.6% of isolates. Such a genetic profile was associated with a higher bacterial resistance to serum mediated killing and enhanced adherence to human respiratory epithelial cells.
Resumo:
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.
Resumo:
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.
Resumo:
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.
Resumo:
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.
Resumo:
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.
Resumo:
Twelve novel 4-thiazolidinone derivatives (2a-l) have been synthesized by reacting formilpyridine thiosemicarbazones (1a-l) and anhydride maleic in toluene. Their chemical structures were confirmed by IR, ¹H and 13C NMR. The new compounds were submitted to in vitro evaluation against pathogenic Gram-positive, Gram-negative bacteria and yeasts. The findings obtained showed that the compounds 2a, 2d, 2e and 2g were effective against some of the bacterial strains used, whereas the compounds 2d, 2e and 2i exhibited a moderate antifungal activity against the yeast strains evaluated. An initial structure activity relationship (SAR) was established.
Resumo:
The antimicrobial properties of the hexane, hexane/EtOAc and methanol fractions of the fresh petioles of Sagittaria montevidensis ssp montevidensis (Alismataceae) were evaluated against fungi and Gram-negative and Gram-positive bacteria. A new abietatriene-type diterpenoid, 3β,7α-dihydroxi-abieta-8,11,13-triene and the known 3β-hydroxy-abieta-8,11,13-trien-7-one were isolated from the most active fraction tested and the structures of these compounds were elucidated by data including IR, EIMS, and 1D and 2D NMR spectra.