996 resultados para Grain trade.
Resumo:
This master thesis studies how trade liberalization affects the firm-level productivity and industrial evolution. To do so, I built a dynamic model that considers firm-level productivity as endogenous to investigate the influence of trade on firm’s productivity and the market structure. In the framework, heterogeneous firms in the same industry operate differently in equilibrium. Specifically, firms are ex ante identical but heterogeneity arises as an equilibrium outcome. Under the setting of monopolistic competition, this type of model yields an industry that is represented not by a steady-state outcome, but by an evolution that rely on the decisions made by individual firms. I prove that trade liberalization has a general positive impact on technological adoption rates and hence increases the firm-level productivity. Besides, this endogenous technology adoption model also captures the stylized facts: exporting firms are larger and more productive than their non-exporting counterparts in the same sector. I assume that the number of firms is endogenous, since, according to the empirical literature, the industrial evolution shows considerably different patterns across countries; some industries experience large scale of firms’ exit in the period of contracting market shares, while some industries display relative stable number of firms or gradually increase quantities. The special word “shakeout” is used to describe the dramatic decrease in the number of firms. In order to explain the causes of shakeout, I construct a model where forward-looking firms decide to enter and exit the market on the basis of their state of technology. In equilibrium, firms choose different dates to adopt innovation which generate a gradual diffusion process. It is exactly this gradual diffusion process that generates the rapid, large-scale exit phenomenon. Specifically, it demonstrates that there is a positive feedback between firm’s exit and adoption, the reduction in the number of firms increases the incentives for remaining firms to adopt innovation. Therefore, in the setting of complete information, this model not only generates a shakeout but also captures the stability of an industry. However, the solely national view of industrial evolution neglects the importance of international trade in determining the shape of market structure. In particular, I show that the higher trade barriers lead to more fragile markets, encouraging the over-entry in the initial stage of industry life cycle and raising the probability of a shakeout. Therefore, more liberalized trade generates more stable market structure from both national and international viewpoints. The main references are Ederington and McCalman(2008,2009).
Resumo:
A large volume of literature suggests that information asymmetry resulting from the spatial separation between investors and investments have a significant impact on the composition of investors’ domestic and international portfolios. I show that institutional factors affecting trading in tangible goods help explain a substantial portion of investors’ spatial bias. More importantly, I demonstrate that an information flow medium with breadth and richness directly linked to the bilateral commitment of resources between countries, that I measure by their trading intensity in tangible goods, is consistent with the prevailing country allocation in investors’ international portfolios.
Resumo:
The structural changes occurring during warm working of Cd-1.5 pct Zn alloy and their effect on the subsequent mechanical properties are studied. It is observed that changes in grain size and preferred orientation are important to a large extent in controlling the mechanical strength. The Hall-Petch slope,R decreases in the warm worked material while the friction stress, σo increases. The lowerR values are attributed to the development of a (101l) texture and the higher σo values are interpreted on the basis of changes in the basal texture.
Resumo:
Severe plastic deformation techniques are known to produce grain sizes up to submicron level. This leads to conventional Hall-Petch strengthening of the as-processed materials. In addition, the microstructures of severe plastic deformation processed materials are characterized by relatively lower dislocation density compared to the conventionally processed materials subjected to the same amount of strain. These two aspects taken together lead to many important attributes. Some examples are ultra-high yield and fracture strengths, superplastic formability at lower temperatures and higher strain rates, superior wear resistance, improved high cycle fatigue life. Since these processes are associated with large amount of strain, depending on the strain path, characteristic crystallographic textures develop. In the present paper, a detailed account of underlying mechanisms during SPD has been discussed and processing-microstructure-texture-property relationship has been presented with reference to a few varieties of steels that have been investigated till date.
Resumo:
Grain growth kinetics was studied for commercially pure magnesium subjected to equal channel angular extrusion (ECAE). The specimens were ECAE processed upto 4 passes at 523 K following all the three important routes, namely A, 13, and C. Texture and microstructures of the samples were studied using Electron Back Scattered Diffraction (EBSD) technique in a Field Emission Gun Scanning Electron Microscope (FEG-SEM). It was observed that the grain size significantly reduces after ECAE. ECAE process produces a slightly rotated B and C-2 fiber. Static annealing leads to normal grain growth with unimodal distribution of grains through out the temperature range. Average activation energy for grain growth in the temperature range studied is found to be less than the activation energy for lattice diffusion and grain boundary diffusion of magnesium. No significant change in texture during isochronal annealing for 1 hour i.e., the predominant deformation texture remains same.
Resumo:
A common and practical paradigm in cooperative communication systems is the use of a dynamically selected `best' relay to decode and forward information from a source to a destination. Such systems use two phases - a relay selection phase, in which the system uses transmission time and energy to select the best relay, and a data transmission phase, in which it uses the spatial diversity benefits of selection to transmit data. In this paper, we derive closed-form expressions for the overall throughput and energy consumption, and study the time and energy trade-off between the selection and data transmission phases. To this end, we analyze a baseline non-adaptive system and several adaptive systems that adapt the selection phase, relay transmission power, or transmission time. Our results show that while selection yields significant benefits, the selection phase's time and energy overhead can be significant. In fact, at the optimal point, the selection can be far from perfect, and depends on the number of relays and the mode of adaptation. The results also provide guidelines about the optimal system operating point for different modes of adaptation. The analysis also sheds new insights on the fast splitting-based algorithm considered in this paper for relay selection.