938 resultados para Graft
Resumo:
Rupestris stem pitting (rSP), a graft-transmissible grapevine disease, can be identified only by its reaction (pitted wood) on inoculated Vitis rupestris ‘St. George.’ DsRNA was extracted from grapevines from California and Canada that indexed positive for rSP on St. George. Two distinct dsRNA species (B and C) (Mr = 5.3 × 106 and 4.4 × 106, respectively) were detected from the stem tissue of rSP-positive samples. Although similar dsRNA species (B and C) were detected in extracts of grapevines from New York, the association of dsRNA B and C with rSP in New York samples was not consistent. Also, eight different dsRNAs, known to be associated with the powdery mildew fungus, Uncinula necator, were detected in leaves of New York samples. In New York, the dsRNAs were not observed in leaves or stem samples collected from June through late August during the 1988 and 1989 growing seasons, suggesting that dsRNA detection in the grape tissue is variable throughout the season. We suggest that dsRNA species B and C are associated with rSP disease. The inconsistent results with New York samples are discussed.
Resumo:
The accumulation and perpetuation of viral pathogens over generations of clonal propagation in crop species such as sweet potato, Ipomoea batatas,inevitably result in a reduction in crop yield and quality. This study was conducted at Bundaberg, Australia to compare the productivity of field-derived and pathogen-tested (PT)clones of 14 sweet potato cultivars and the yield benefits of using healthy planting materials. The field-derived clonal materials were exposed to the endemic viruses, while the PT clones were subjected to thermotherapy and meristem-tip culture to eliminate viral pathogens. The plants were indexed for viruses using nitrocellulose membrane-enzyme-linked immunosorbent assay and graft-inoculations onto Ipomoea setosa. A net benefit of 38% in storage root yield was realised from using PT materials in this study.Conversely, in a similar study previously conducted at Kerevat, Papua New Guinea (PNG), a net deficit of 36% was realised. This reinforced our finding that the response to pathogen testing was cultivar dependent and that the PNG cultivars in these studies generally exhibited increased tolerance to the endemic viruses present at the respective trial sites as manifested in their lack of response from the use of PT clones. They may be useful sources for future resistance breeding efforts. Nonetheless, the potential economic gain from using PT stocks necessitates the use of pathogen testing on virus-susceptible commercial cultivars.
Resumo:
BACKGROUND: Grafting of autologous hyaline cartilage and bone for articular cartilage repair is a well-accepted technique. Although encouraging midterm clinical results have been reported, no information on the mechanical competence of the transplanted joint surface is available. HYPOTHESIS: The mechanical competence of osteochondral autografts is maintained after transplantation. STUDY DESIGN: Controlled laboratory study. METHODS: Osteochondral defects were filled with autografts (7.45 mm in diameter) in one femoral condyle in 12 mature sheep. The ipsilateral femoral condyle served as the donor site, and the resulting defect (8.3 mm in diameter) was left empty. The repair response was examined after 3 and 6 months with mechanical and histologic assessment and histomorphometric techniques. RESULTS: Good surface congruity and plug placement was achieved. The Young modulus of the grafted cartilage significantly dropped to 57.5% of healthy tissue after 3 months (P < .05) but then recovered to 82.2% after 6 months. The aggregate and dynamic moduli behaved similarly. The graft edges showed fibrillation and, in some cases (4 of 6), hypercellularity and chondrocyte clustering. Subchondral bone sclerosis was observed in 8 of 12 cases, and the amount of mineralized bone in the graft area increased from 40% to 61%. CONCLUSIONS: The mechanical quality of transplanted cartilage varies considerably over a short period of time, potentially reflecting both degenerative and regenerative processes, while histologically signs of both cartilage and bone degeneration occur. CLINICAL RELEVANCE: Both the mechanically degenerative and restorative processes illustrate the complex progression of regeneration after osteochondral transplantation. The histologic evidence raises doubts as to the long-term durability of the osteochondral repair.
Resumo:
Cell-based therapy is one of the major potential therapeutic strategies for cardiovascular, neuronal and degenerative diseases in recent years. Synthetic biodegradable polymers have been utilized increasingly in pharmaceutical, medical and biomedical engineering. Control of the interaction of living cells and biomaterials surfaces is one of the major goals in the design and development of new polymeric biomaterials in tissue engineering. The aims of this study is to develop a novel bio-mimic polymeric materials which will facilitate the delivery cells, control cell bioactivities and enhance the focal integration of graft cells with host tissues.
Resumo:
Smart matrices are required in bone tissueengineered grafts that provide an optimal environment for cells and retain osteo-inductive factors for sustained biological activity. We hypothesized that a slow-degrading heparin-incorporated hyaluronan (HA) hydrogel can preserve BMP-2; while an arterio–venous (A–V) loop can support axial vascularization to provide nutrition for a bioartificial bone graft. HA was evaluated for osteoblast growth and BMP-2 release. Porous PLDLLA–TCP–PCL scaffolds were produced by rapid prototyping technology and applied in vivo along with HA-hydrogel, loaded with either primary osteoblasts or BMP-2. A microsurgically created A–V loop was placed around the scaffold, encased in an isolation chamber in Lewis rats. HA-hydrogel supported growth of osteoblasts over 8 weeks and allowed sustained release of BMP-2 over 35 days. The A–V loop provided an angiogenic stimulus with the formation of vascularized tissue in the scaffolds. Bone-specific genes were detected by real time RT-PCR after 8 weeks. However, no significant amount of bone was observed histologically. The heterotopic isolation chamber in combination with absent biomechanical stimulation might explain the insufficient bone formation despite adequate expression of bone-related genes. Optimization of the interplay of osteogenic cells and osteo-inductive factors might eventually generate sufficient amounts of axially vascularized bone grafts for reconstructive surgery.
Resumo:
Currently, well-established clinical therapeutic approaches for bone reconstruction are restricted to the transplantation of autografts and allografts, and the implantation of metal devices or ceramic-based implants to assist bone regeneration. Bone grafts possess osteoconductive and osteoinductive properties, however they are limited in access and availability and associated with donor site morbidity, haemorrhage, risk of infection, insufficient transplant integration, graft devitalisation, and subsequent resorption resulting in decreased mechanical stability. As a result, recent research focuses on the development of alternative therapeutic concepts. Analysing the tissue engineering literature it can be concluded that bone regeneration has become a focus area in the field. Hence, a considerable number of research groups and commercial entities work on the development of tissue engineered constructs for bone regeneration. However, bench to bedside translations are still infrequent as the process towards approval by regulatory bodies is protracted and costly, requiring both comprehensive in vitro and in vivo studies. In translational orthopaedic research, the utilisation of large preclinical animal models is a conditio sine qua non. Consequently, to allow comparison between different studies and their outcomes, it is essential that animal models, fixation devices, surgical procedures and methods of taking measurements are well standardized to produce reliable data pools as a base for further research directions. The following chapter reviews animal models of the weight-bearing lower extremity utilized in the field which include representations of fracture-healing, segmental bone defects, and fracture non-unions.
Resumo:
Scaffolds with open-pore morphologies offer several advantages in cell-based tissue engineering, but their use is limited by a low cell seeding efficiency. We hypothesized that inclusion of a collagen network as filling material within the open-pore architecture of polycaprolactone-tricalcium phosphate (PCL-TCP) scaffolds increases human bone marrow stromal cells (hBMSC) seeding efficiency under perfusion and in vivo osteogenic capacity of the resulting constructs. PCL-TCP scaffolds, rapid prototyped with a honeycomb-like architecture, were filled with a collagen gel and subsequently lyophilized, with or without final crosslinking. Collagen-free scaffolds were used as controls. The seeding efficiency was assessed after overnight perfusion of expanded hBMSC directly through the scaffold pores using a bioreactor system. By seeding and culturing freshly harvested hBMSC under perfusion for 3 weeks, the osteogenic capacity of generated constructs was tested by ectopic implantation in nude mice. The presence of the collagen network, independently of the crosslinking process, significantly increased the cell seeding efficiency (2.5-fold), and reduced the loss of clonogenic cells in the supernatant. Although no implant generated frank bone tissue, possibly due to the mineral distribution within the scaffold polymer phase, the presence of a non crosslinked collagen phase led to in vivo formation of scattered structures of dense osteoids. Our findings verify that the inclusion of a collagen network within open morphology porous scaffolds improves cell retention under perfusion seeding. In the context of cell-based therapies, collagen-filled porous scaffolds are expected to yield superior cell utilization, and could be combined with perfusion-based bioreactor devices to streamline graft manufacture.
Resumo:
The relationship between radiologic union and clinical outcome in thoracoscopic scoliosis surgery is not clear, as apparent non-union of a spinal fusion does not always correspond to a poor clinical result. The aim of this study was to evaluate CT fusion rates 24 months after thoracoscopic anterior scoliosis surgery, and to explore the relationship between fusion scores and; (i) rod diameter, (ii) graft type, (iii) fusion level, (iv) occurrence of post-operative implant failure, and (v) lateral position of the fusion mass in the intervertebral disc space. We propose that moderate fusion scores on the Sucato scale secure successful clinical outcomes in thoracoscopic scoliosis surgery.
Resumo:
The relationship between radiologic union and clinical outcomes in thoracoscopic scoliosis surgery is not clear, as apparent non-union of a spinal fusion does not always correspond to a poor clinical result. The aim of this study was to evaluate for the first time the interbody fusion rates using low dose CT scans at minimum 24 months after thoracoscopic scoliosis surgery, and to explore the relationship between fusion scores and; (i) rod diameter, (ii) graft type, (iii) fusion level, (iv) implant failure, and (v) lateral position in the disc space. The study found that moderate fusion scores on the Sucato scale secure successful clinical outcomes in thoracoscopic scoliosis surgery.
Resumo:
We report the application of a novel scaffold design in a sheep thoracic spine model for spine deformity correction. The combination of the calcium-phosphate coated polycaprolactone scaffolds with recombinant human bone morphogenic protein-2 (rhBMP-2) are intended as a future bone graft substitute in ensuring the stability of bony intervertebral fusion. A solid free-form fabrication process based on melt extrusion has been utilized in the manufacturing of these scaffolds. To date there are no studies examining the use of such biodegradable implants in a sheep thoracic spine model. The success of anterior scoliosis surgery in humans depends on achieving a solid bony fusion between adjacent vertebrae after the intervertebral discs have been surgically cleared and the disc spaces filled with graft material. Due to limited availability of autograft, there is much current interest in the development of synthetic scaffolds in combination with growth factors such as recombinant human bone morphogenetic protein (rhBMP-2) to achieve a solid bony fusion following scoliosis surgery.