333 resultados para Gesture.
Resumo:
The aim of TinyML is to bring the capability of Machine Learning to ultra-low-power devices, typically under a milliwatt, and with this it breaks the traditional power barrier that prevents the widely distributed machine intelligence. TinyML allows greater reactivity and privacy by conducting inference on the computer and near-sensor while avoiding the energy cost associated with wireless communication, which is far higher at this scale than that of computing. In addition, TinyML’s efficiency makes a class of smart, battery-powered, always-on applications that can revolutionize the collection and processing of data in real time. This emerging field, which is the end of a lot of innovation, is ready to speed up its growth in the coming years. In this thesis, we deploy three model on a microcontroller. For the model, datasets are retrieved from an online repository and are preprocessed as per our requirement. The model is then trained on the split of preprocessed data at its best to get the most accuracy out of it. Later the trained model is converted to C language to make it possible to deploy on the microcontroller. Finally, we take step towards incorporating the model into the microcontroller by implementing and evaluating an interface for the user to utilize the microcontroller’s sensors. In our thesis, we will have 4 chapters. The first will give us an introduction of TinyML. The second chapter will help setup the TinyML Environment. The third chapter will be about a major use of TinyML in Wake Word Detection. The final chapter will deal with Gesture Recognition in TinyML.
Resumo:
The first topic analyzed in the thesis will be Neural Architecture Search (NAS). I will focus on two different tools that I developed, one to optimize the architecture of Temporal Convolutional Networks (TCNs), a convolutional model for time-series processing that has recently emerged, and one to optimize the data precision of tensors inside CNNs. The first NAS proposed explicitly targets the optimization of the most peculiar architectural parameters of TCNs, namely dilation, receptive field, and the number of features in each layer. Note that this is the first NAS that explicitly targets these networks. The second NAS proposed instead focuses on finding the most efficient data format for a target CNN, with the granularity of the layer filter. Note that applying these two NASes in sequence allows an "application designer" to minimize the structure of the neural network employed, minimizing the number of operations or the memory usage of the network. After that, the second topic described is the optimization of neural network deployment on edge devices. Importantly, exploiting edge platforms' scarce resources is critical for NN efficient execution on MCUs. To do so, I will introduce DORY (Deployment Oriented to memoRY) -- an automatic tool to deploy CNNs on low-cost MCUs. DORY, in different steps, can manage different levels of memory inside the MCU automatically, offload the computation workload (i.e., the different layers of a neural network) to dedicated hardware accelerators, and automatically generates ANSI C code that orchestrates off- and on-chip transfers with the computation phases. On top of this, I will introduce two optimized computation libraries that DORY can exploit to deploy TCNs and Transformers on edge efficiently. I conclude the thesis with two different applications on bio-signal analysis, i.e., heart rate tracking and sEMG-based gesture recognition.
Resumo:
Trying to explain to a robot what to do is a difficult undertaking, and only specific types of people have been able to do so far, such as programmers or operators who have learned how to use controllers to communicate with a robot. My internship's goal was to create and develop a framework that would make that easier. The system uses deep learning techniques to recognize a set of hand gestures, both static and dynamic. Then, based on the gesture, it sends a command to a robot. To be as generic as feasible, the communication is implemented using Robot Operating System (ROS). Furthermore, users can add new recognizable gestures and link them to new robot actions; a finite state automaton enforces the users' input verification and correct action sequence. Finally, the users can create and utilize a macro to describe a sequence of actions performable by a robot.