970 resultados para Genetic Variance-covariance Matrix
Resumo:
The Assimilation in the Unstable Subspace (AUS) was introduced by Trevisan and Uboldi in 2004, and developed by Trevisan, Uboldi and Carrassi, to minimize the analysis and forecast errors by exploiting the flow-dependent instabilities of the forecast-analysis cycle system, which may be thought of as a system forced by observations. In the AUS scheme the assimilation is obtained by confining the analysis increment in the unstable subspace of the forecast-analysis cycle system so that it will have the same structure of the dominant instabilities of the system. The unstable subspace is estimated by Breeding on the Data Assimilation System (BDAS). AUS- BDAS has already been tested in realistic models and observational configurations, including a Quasi-Geostrophicmodel and a high dimensional, primitive equation ocean model; the experiments include both fixed and“adaptive”observations. In these contexts, the AUS-BDAS approach greatly reduces the analysis error, with reasonable computational costs for data assimilation with respect, for example, to a prohibitive full Extended Kalman Filter. This is a follow-up study in which we revisit the AUS-BDAS approach in the more basic, highly nonlinear Lorenz 1963 convective model. We run observation system simulation experiments in a perfect model setting, and with two types of model error as well: random and systematic. In the different configurations examined, and in a perfect model setting, AUS once again shows better efficiency than other advanced data assimilation schemes. In the present study, we develop an iterative scheme that leads to a significant improvement of the overall assimilation performance with respect also to standard AUS. In particular, it boosts the efficiency of regime’s changes tracking, with a low computational cost. Other data assimilation schemes need estimates of ad hoc parameters, which have to be tuned for the specific model at hand. In Numerical Weather Prediction models, tuning of parameters — and in particular an estimate of the model error covariance matrix — may turn out to be quite difficult. Our proposed approach, instead, may be easier to implement in operational models.
Resumo:
Functional neuroimaging techniques enable investigations into the neural basis of human cognition, emotions, and behaviors. In practice, applications of functional magnetic resonance imaging (fMRI) have provided novel insights into the neuropathophysiology of major psychiatric,neurological, and substance abuse disorders, as well as into the neural responses to their treatments. Modern activation studies often compare localized task-induced changes in brain activity between experimental groups. One may also extend voxel-level analyses by simultaneously considering the ensemble of voxels constituting an anatomically defined region of interest (ROI) or by considering means or quantiles of the ROI. In this work we present a Bayesian extension of voxel-level analyses that offers several notable benefits. First, it combines whole-brain voxel-by-voxel modeling and ROI analyses within a unified framework. Secondly, an unstructured variance/covariance for regional mean parameters allows for the study of inter-regional functional connectivity, provided enough subjects are available to allow for accurate estimation. Finally, an exchangeable correlation structure within regions allows for the consideration of intra-regional functional connectivity. We perform estimation for our model using Markov Chain Monte Carlo (MCMC) techniques implemented via Gibbs sampling which, despite the high throughput nature of the data, can be executed quickly (less than 30 minutes). We apply our Bayesian hierarchical model to two novel fMRI data sets: one considering inhibitory control in cocaine-dependent men and the second considering verbal memory in subjects at high risk for Alzheimer’s disease. The unifying hierarchical model presented in this manuscript is shown to enhance the interpretation content of these data sets.
Resumo:
Background: Deterministic evolution, phylogenetic contingency and evolutionary chance each can influence patterns of morphological diversification during adaptive radiation. In comparative studies of replicate radiations, convergence in a common morphospace implicates determinism, whereas non-convergence suggests the importance of contingency or chance. Methodology/Principal Findings: The endemic cichlid fish assemblages of the three African great lakes have evolved similar sets of ecomorphs but show evidence of non-convergence when compared in a common morphospace, suggesting the importance of contingency and/or chance. We then analyzed the morphological diversity of each assemblage independently and compared their axes of diversification in the unconstrained global morphospace. We find that despite differences in phylogenetic composition, invasion history, and ecological setting, the three assemblages are diversifying along parallel axes through morphospace and have nearly identical variance-covariance structures among morphological elements. Conclusions/Significance: By demonstrating that replicate adaptive radiations are diverging along parallel axes, we have shown that non-convergence in the common morphospace is associated with convergence in the global morphospace. Applying these complimentary analyses to future comparative studies will improve our understanding of the relationship between morphological convergence and non-convergence, and the roles of contingency, chance and determinism in driving morphological diversification.
Resumo:
Coat color and pattern variations in domestic animals are frequently inherited as simple monogenic traits, but a number are known to have a complex genetic basis. While the analysis of complex trait data remains a challenge in all species, we can use the reduced haplotypic diversity in domestic animal populations to gain insight into the genomic interactions underlying complex phenotypes. White face and leg markings are examples of complex traits in horses where little is known of the underlying genetics. In this study, Franches-Montagnes (FM) horses were scored for the occurrence of white facial and leg markings using a standardized scoring system. A genome-wide association study (GWAS) was performed for several white patterning traits in 1,077 FM horses. Seven quantitative trait loci (QTL) affecting the white marking score with p-values p≤10(-4) were identified. Three loci, MC1R and the known white spotting genes, KIT and MITF, were identified as the major loci underlying the extent of white patterning in this breed. Together, the seven loci explain 54% of the genetic variance in total white marking score, while MITF and KIT alone account for 26%. Although MITF and KIT are the major loci controlling white patterning, their influence varies according to the basic coat color of the horse and the specific body location of the white patterning. Fine mapping across the MITF and KIT loci was used to characterize haplotypes present. Phylogenetic relationships among haplotypes were calculated to assess their selective and evolutionary influences on the extent of white patterning. This novel approach shows that KIT and MITF act in an additive manner and that accumulating mutations at these loci progressively increase the extent of white markings.
Resumo:
Linkage disequilibrium methods can be used to find genes influencing quantitative trait variation in humans. Linkage disequilibrium methods can require smaller sample sizes than linkage equilibrium methods, such as the variance component approach to find loci with a specific effect size. The increase in power is at the expense of requiring more markers to be typed to scan the entire genome. This thesis compares different linkage disequilibrium methods to determine which factors influence the power to detect disequilibrium. The costs of disequilibrium and equilibrium tests were compared to determine whether the savings in phenotyping costs when using disequilibrium methods outweigh the additional genotyping costs.^ Nine linkage disequilibrium tests were examined by simulation. Five tests involve selecting isolated unrelated individuals while four involved the selection of parent child trios (TDT). All nine tests were found to be able to identify disequilibrium with the correct significance level in Hardy-Weinberg populations. Increasing linked genetic variance and trait allele frequency were found to increase the power to detect disequilibrium, while increasing the number of generations and distance between marker and trait loci decreased the power to detect disequilibrium. Discordant sampling was used for several of the tests. It was found that the more stringent the sampling, the greater the power to detect disequilibrium in a sample of given size. The power to detect disequilibrium was not affected by the presence of polygenic effects.^ When the trait locus had more than two trait alleles, the power of the tests maximized to less than one. For the simulation methods used here, when there were more than two-trait alleles there was a probability equal to 1-heterozygosity of the marker locus that both trait alleles were in disequilibrium with the same marker allele, resulting in the marker being uninformative for disequilibrium.^ The five tests using isolated unrelated individuals were found to have excess error rates when there was disequilibrium due to population admixture. Increased error rates also resulted from increased unlinked major gene effects, discordant trait allele frequency, and increased disequilibrium. Polygenic effects did not affect the error rates. The TDT, Transmission Disequilibrium Test, based tests were not liable to any increase in error rates.^ For all sample ascertainment costs, for recent mutations ($<$100 generations) linkage disequilibrium tests were less expensive than the variance component test to carry out. Candidate gene scans saved even more money. The use of recently admixed populations also decreased the cost of performing a linkage disequilibrium test. ^
Resumo:
We develop statistical procedures for estimating shape and orientation of arbitrary three-dimensional particles. We focus on the case where particles cannot be observed directly, but only via sections. Volume tensors are used for describing particle shape and orientation, and we derive stereological estimators of the tensors. These estimators are combined to provide consistent estimators of the moments of the so-called particle cover density. The covariance structure associated with the particle cover density depends on the orientation and shape of the particles. For instance, if the distribution of the typical particle is invariant under rotations, then the covariance matrix is proportional to the identity matrix. We develop a non-parametric test for such isotropy. A flexible Lévy-based particle model is proposed, which may be analysed using a generalized method of moments in which the volume tensors enter. The developed methods are used to study the cell organization in the human brain cortex.
Resumo:
Lichens are symbioses between fungi (mycobionts) and photoautotrophic green algae or cyanobacteria (photobionts). Many lichens occupy large distributional ranges covering several climatic zones. So far, little is known about the large-scale phylogeography of lichen photobionts and their role in shaping the distributional ranges of lichens. We studied south polar, temperate and north polar populations of the widely distributed fruticose lichen Cetraria aculeata. Based on the DNA sequences from three loci for each symbiont, we compared the genetic structure of mycobionts and photobionts. Phylogenetic reconstructions and Bayesian clustering methods divided the mycobiont and photobiont data sets into three groups. An AMOVA shows that the genetic variance of the photobiont is best explained by differentiation between temperate and polar regions and that of the mycobiont by an interaction of climatic and geographical factors. By partialling out the relative contribution of climate, geography and codispersal, we found that the most relevant factors shaping the genetic structure of the photobiont are climate and a history of codispersal. Mycobionts in the temperate region are consistently associated with a specific photobiont lineage. We therefore conclude that a photobiont switch in the past enabled C. aculeata to colonize temperate as well as polar habitats. Rare photobiont switches may increase the geographical range and ecological niche of lichen mycobionts by associating them with locally adapted photobionts in climatically different regions and, together with isolation by distance, may lead to genetic isolation between populations and thus drive the evolution of lichens.
Resumo:
State-of-the-art process-based models have shown to be applicable to the simulation and prediction of coastal morphodynamics. On annual to decadal temporal scales, these models may show limitations in reproducing complex natural morphological evolution patterns, such as the movement of bars and tidal channels, e.g. the observed decadal migration of the Medem Channel in the Elbe Estuary, German Bight. Here a morphodynamic model is shown to simulate the hydrodynamics and sediment budgets of the domain to some extent, but fails to adequately reproduce the pronounced channel migration, due to the insufficient implementation of bank erosion processes. In order to allow for long-term simulations of the domain, a nudging method has been introduced to update the model-predicted bathymetries with observations. The model-predicted bathymetry is nudged towards true states in annual time steps. Sensitivity analysis of a user-defined correlation length scale, for the definition of the background error covariance matrix during the nudging procedure, suggests that the optimal error correlation length is similar to the grid cell size, here 80-90 m. Additionally, spatially heterogeneous correlation lengths produce more realistic channel depths than do spatially homogeneous correlation lengths. Consecutive application of the nudging method compensates for the (stand-alone) model prediction errors and corrects the channel migration pattern, with a Brier skill score of 0.78. The proposed nudging method in this study serves as an analytical approach to update model predictions towards a predefined 'true' state for the spatiotemporal interpolation of incomplete morphological data in long-term simulations.
Resumo:
Patterns in sequences of amino acid hydrophobic free energies predict secondary structures in proteins. In protein folding, matches in hydrophobic free energy statistical wavelengths appear to contribute to selective aggregation of secondary structures in “hydrophobic zippers.” In a similar setting, the use of Fourier analysis to characterize the dominant statistical wavelengths of peptide ligands’ and receptor proteins’ hydrophobic modes to predict such matches has been limited by the aliasing and end effects of short peptide lengths, as well as the broad-band, mode multiplicity of many of their frequency (power) spectra. In addition, the sequence locations of the matching modes are lost in this transformation. We make new use of three techniques to address these difficulties: (i) eigenfunction construction from the linear decomposition of the lagged covariance matrices of the ligands and receptors as hydrophobic free energy sequences; (ii) maximum entropy, complex poles power spectra, which select the dominant modes of the hydrophobic free energy sequences or their eigenfunctions; and (iii) discrete, best bases, trigonometric wavelet transformations, which confirm the dominant spectral frequencies of the eigenfunctions and locate them as (absolute valued) moduli in the peptide or receptor sequence. The leading eigenfunction of the covariance matrix of a transmembrane receptor sequence locates the same transmembrane segments seen in n-block-averaged hydropathy plots while leaving the remaining hydrophobic modes unsmoothed and available for further analyses as secondary eigenfunctions. In these receptor eigenfunctions, we find a set of statistical wavelength matches between peptide ligands and their G-protein and tyrosine kinase coupled receptors, ranging across examples from 13.10 amino acids in acid fibroblast growth factor to 2.18 residues in corticotropin releasing factor. We find that the wavelet-located receptor modes in the extracellular loops are compatible with studies of receptor chimeric exchanges and point mutations. A nonbinding corticotropin-releasing factor receptor mutant is shown to have lost the signatory mode common to the normal receptor and its ligand. Hydrophobic free energy eigenfunctions and their transformations offer new quantitative physical homologies in database searches for peptide-receptor matches.
Resumo:
In many species, the Y (or W) chromosome carries relatively few functional genes. This observation motivates the null hypothesis that the Y will be a minor contributor to genetic variation for fitness. Previous data and theory supported the null hypothesis, but evidence presented here shows that the Y of Drosophila melanogaster is a major determinant of a male's total fitness, with standing genetic variation estimated to be 68% of that of an entire X/autosome genomic haplotype. Most Y-linked genes are expressed during spermatogenesis, and correspondingly, we found that the Y influences fitness primarily through its effect on a male's reproductive success (sperm competition and/or mating success) rather than his egg-to-adult viability. But the fitness of a Y highly depended on the genetic makeup of its bearer, reverting from high to low in different genetic backgrounds. This pattern leads to large epistatic (inconsistent among backgrounds) but no additive (consistent among backgrounds) Y-linked genetic variance for fitness. On a microevolutionary scale, the observed large epistatic variation on the Y substantially reduces heritable variation for fitness among males, and on a macroevolutionary scale, the Y produces strong selection for genomic rearrangements that move interacting genes onto the nonrecombining region of the Y.
Resumo:
O milho-doce é um tipo especial de milho, de alto valor nutricional que acumula polissacarídeos solúveis de caráter adocicado no endosperma. O consumo deste vegetal está crescendo no Brasil. Sendo esse um dos maiores países produtores de milho do mundo, há também um enorme potencial de produção de milho-doce. Atualmente, existem 53 cultivares de milho-doce registradas no país, mas apenas uma predomina nas lavouras desta cultura. Nota-se uma demanda por novas cultivares de milho-doce adaptadas às condições tropicais, com altas produtividades e excelente qualidade dos grãos. Há também uma escassez de informações sobre a avaliação e obtenção de cultivares de milho-doce. Os objetivos deste trabalho compreenderam: (i) verificação da viabilidade da utilização de um testador com elevado nível de endogamia e mais selecionado, em relação aos testadores com menores níveis de endogamia e menos selecionados, para obtenção de testcrosses; (ii) verificação do progresso realizado nas médias dos testcrosses; (iii) estimação das correlações entre a produtividade de espigas e os componentes de produção; (iv) aplicação de um índice de seleção para caracterizar e selecionar os melhores testcrosses e (v) verificação da variância genética disponível após a seleção e autofecundação. Foram avaliadas duas populações de milho-doce, em que uma é testadora da outra. Os três tipos de testadores utilizados foram obtidos a partir de uma mistura de linhagens selecionadas da geração anterior, sendo assim eles possuíam duas etapas de seleção e três níveis de endogamia. Visando a seleção de linhagens, 176 testcrosses foram avaliados em duas épocas de plantio, em delineamento casualizado em blocos com três repetições. Foram avaliados os caracteres dias para florescimento masculino(FM), altura das plantas(AP), número de espigas comerciais(EC), produtividade das espigas comerciais(PE), comprimento das espigas(CE), diâmetro das espigas(DE) e enchimento de ponta(EP). Foram observadas diferenças significativas entre as médias dos testcrosses nas análises de variância individuais e conjuntas. As interações entre testcrosses e testadores, nas análises individuais, não apresentaram diferenças significativas, indicando que não houve mudança no ordenamento dos testcrosses quando se utilizaram diferentes testadores. Para a mesma interação, nas análises conjuntas foram estimadas as correlações de Spearman, que se mostraram, na grande maioria, significativas, ou seja, foi detectada correlação entre o ranqueamento dos testcrosses. Para todos os caracteres avaliados, os testcrosses exibiram médias iguais ou superiores à melhor testemunha. Não houve evidências claras da diminuição da variância genética dos testcrosses quando foram utilizados testadores mais endogâmicos e mais selecionados. O testador com endogamia equivalente à das linhagens testadas e mais selecionado mostrou-se tão eficiente quanto os testadores com endogamia menor e menos selecionado. Foram observados valores consideráveis para os progressos realizados nas médias dos testcrosses, na maioria superiores a 1%, quando a seleção se deu nos testadores e nas linhagens, destacando que a utilização de testadores selecionados maximiza as médias dos testcrosses. Observaram-se correlações genéticas positivas (rG≥0,556) entre a produtividade de espigas comerciais e os caracteres EC, CE, DE e EP. O índice utilizado classificou os testcrosses em relação a todos os caracteres avaliados simultaneamente e permitiu a seleção dos melhores.
Resumo:
La plupart des modèles en statistique classique repose sur une hypothèse sur la distribution des données ou sur une distribution sous-jacente aux données. La validité de cette hypothèse permet de faire de l’inférence, de construire des intervalles de confiance ou encore de tester la fiabilité du modèle. La problématique des tests d’ajustement vise à s’assurer de la conformité ou de la cohérence de l’hypothèse avec les données disponibles. Dans la présente thèse, nous proposons des tests d’ajustement à la loi normale dans le cadre des séries chronologiques univariées et vectorielles. Nous nous sommes limités à une classe de séries chronologiques linéaires, à savoir les modèles autorégressifs à moyenne mobile (ARMA ou VARMA dans le cas vectoriel). Dans un premier temps, au cas univarié, nous proposons une généralisation du travail de Ducharme et Lafaye de Micheaux (2004) dans le cas où la moyenne est inconnue et estimée. Nous avons estimé les paramètres par une méthode rarement utilisée dans la littérature et pourtant asymptotiquement efficace. En effet, nous avons rigoureusement montré que l’estimateur proposé par Brockwell et Davis (1991, section 10.8) converge presque sûrement vers la vraie valeur inconnue du paramètre. De plus, nous fournissons une preuve rigoureuse de l’inversibilité de la matrice des variances et des covariances de la statistique de test à partir de certaines propriétés d’algèbre linéaire. Le résultat s’applique aussi au cas où la moyenne est supposée connue et égale à zéro. Enfin, nous proposons une méthode de sélection de la dimension de la famille d’alternatives de type AIC, et nous étudions les propriétés asymptotiques de cette méthode. L’outil proposé ici est basé sur une famille spécifique de polynômes orthogonaux, à savoir les polynômes de Legendre. Dans un second temps, dans le cas vectoriel, nous proposons un test d’ajustement pour les modèles autorégressifs à moyenne mobile avec une paramétrisation structurée. La paramétrisation structurée permet de réduire le nombre élevé de paramètres dans ces modèles ou encore de tenir compte de certaines contraintes particulières. Ce projet inclut le cas standard d’absence de paramétrisation. Le test que nous proposons s’applique à une famille quelconque de fonctions orthogonales. Nous illustrons cela dans le cas particulier des polynômes de Legendre et d’Hermite. Dans le cas particulier des polynômes d’Hermite, nous montrons que le test obtenu est invariant aux transformations affines et qu’il est en fait une généralisation de nombreux tests existants dans la littérature. Ce projet peut être vu comme une généralisation du premier dans trois directions, notamment le passage de l’univarié au multivarié ; le choix d’une famille quelconque de fonctions orthogonales ; et enfin la possibilité de spécifier des relations ou des contraintes dans la formulation VARMA. Nous avons procédé dans chacun des projets à une étude de simulation afin d’évaluer le niveau et la puissance des tests proposés ainsi que de les comparer aux tests existants. De plus des applications aux données réelles sont fournies. Nous avons appliqué les tests à la prévision de la température moyenne annuelle du globe terrestre (univarié), ainsi qu’aux données relatives au marché du travail canadien (bivarié). Ces travaux ont été exposés à plusieurs congrès (voir par exemple Tagne, Duchesne et Lafaye de Micheaux (2013a, 2013b, 2014) pour plus de détails). Un article basé sur le premier projet est également soumis dans une revue avec comité de lecture (Voir Duchesne, Lafaye de Micheaux et Tagne (2016)).
Resumo:
La plupart des modèles en statistique classique repose sur une hypothèse sur la distribution des données ou sur une distribution sous-jacente aux données. La validité de cette hypothèse permet de faire de l’inférence, de construire des intervalles de confiance ou encore de tester la fiabilité du modèle. La problématique des tests d’ajustement vise à s’assurer de la conformité ou de la cohérence de l’hypothèse avec les données disponibles. Dans la présente thèse, nous proposons des tests d’ajustement à la loi normale dans le cadre des séries chronologiques univariées et vectorielles. Nous nous sommes limités à une classe de séries chronologiques linéaires, à savoir les modèles autorégressifs à moyenne mobile (ARMA ou VARMA dans le cas vectoriel). Dans un premier temps, au cas univarié, nous proposons une généralisation du travail de Ducharme et Lafaye de Micheaux (2004) dans le cas où la moyenne est inconnue et estimée. Nous avons estimé les paramètres par une méthode rarement utilisée dans la littérature et pourtant asymptotiquement efficace. En effet, nous avons rigoureusement montré que l’estimateur proposé par Brockwell et Davis (1991, section 10.8) converge presque sûrement vers la vraie valeur inconnue du paramètre. De plus, nous fournissons une preuve rigoureuse de l’inversibilité de la matrice des variances et des covariances de la statistique de test à partir de certaines propriétés d’algèbre linéaire. Le résultat s’applique aussi au cas où la moyenne est supposée connue et égale à zéro. Enfin, nous proposons une méthode de sélection de la dimension de la famille d’alternatives de type AIC, et nous étudions les propriétés asymptotiques de cette méthode. L’outil proposé ici est basé sur une famille spécifique de polynômes orthogonaux, à savoir les polynômes de Legendre. Dans un second temps, dans le cas vectoriel, nous proposons un test d’ajustement pour les modèles autorégressifs à moyenne mobile avec une paramétrisation structurée. La paramétrisation structurée permet de réduire le nombre élevé de paramètres dans ces modèles ou encore de tenir compte de certaines contraintes particulières. Ce projet inclut le cas standard d’absence de paramétrisation. Le test que nous proposons s’applique à une famille quelconque de fonctions orthogonales. Nous illustrons cela dans le cas particulier des polynômes de Legendre et d’Hermite. Dans le cas particulier des polynômes d’Hermite, nous montrons que le test obtenu est invariant aux transformations affines et qu’il est en fait une généralisation de nombreux tests existants dans la littérature. Ce projet peut être vu comme une généralisation du premier dans trois directions, notamment le passage de l’univarié au multivarié ; le choix d’une famille quelconque de fonctions orthogonales ; et enfin la possibilité de spécifier des relations ou des contraintes dans la formulation VARMA. Nous avons procédé dans chacun des projets à une étude de simulation afin d’évaluer le niveau et la puissance des tests proposés ainsi que de les comparer aux tests existants. De plus des applications aux données réelles sont fournies. Nous avons appliqué les tests à la prévision de la température moyenne annuelle du globe terrestre (univarié), ainsi qu’aux données relatives au marché du travail canadien (bivarié). Ces travaux ont été exposés à plusieurs congrès (voir par exemple Tagne, Duchesne et Lafaye de Micheaux (2013a, 2013b, 2014) pour plus de détails). Un article basé sur le premier projet est également soumis dans une revue avec comité de lecture (Voir Duchesne, Lafaye de Micheaux et Tagne (2016)).
Resumo:
The negative effects of very low birthweight on intellectual development have been well documented, and more recently this effect has been shown to generalise to birthweights within the normal range. In this study we investigate the etiology of this relationship by using a classical twin design to disentangle the contributions of genes and environment. A previous Dutch study (Boomsma et al., 2001) examining these effects indicated that genes were important in mediating the association of birthweight to full IQ measured at ages 7 and 10, but not at ages 5 and 12. Here the association between birthweight and IQ at age 16 is considered (N = 523 twin pairs). Using variance components modeling we found that the genetic variance in birthweight (4%) completely overlapped with that in verbal IQ but not performance or full IQ. Results further showed the importance of shared environmental effects on birthweight (similar to 60%) but not on IQ (with genes explaining up to 72% of IQ variance). Models incorporating a direction of causation parameter between birthweight and IQ provided adequate fit to the data in either causal direction for performance and full IQ, but the model with verbal 10 causing birthweight was preferred to one in which birthweight influenced verbal IQ. As the measurement of birthweight precedes the measurement of twins' IQ at age 16, the influence of verbal IQ might be better considered as a proxy for parents' 10 or education, and it is possible that brighter mothers provide better prenatal environments for their children.
Resumo:
Improvement of end-use quality in bread wheat depends on a thorough understanding of current wheat quality and the influences of genotype (G), environment (E), and genotype by environment interaction (G x E) on quality traits. Thirty-nine spring-sown spring wheat (SSSW) cultivars and advanced lines from China were grown in four agro-ecological zones comprising seven locations during the 1998 and 1999 cropping seasons. Data on 12 major bread-making quality traits were used to investigate the effect of G, E, and G x E on these traits. Wide range variability for protein quantity and quality, starch quality parameters and milling quality in Chinese SSSW was observed. Genotype and environment were found to significantly influence all quality parameters as major effects. Kernel hardness, flour yield, Zeleny sedimentation value and mixograph properties were mainly influenced by the genetic variance components, while thousand kernel weight, test weight, and falling number were mostly influenced by the environmental variance components. Genotype, environment, and their interaction had important effects on test weight, mixing development time and RVA parameters. Cultivars originating from Zone VI (northeast) generally expressed high kernel hardness, good starch quality, but poor milling and medium to weak mixograph performance; those from Zone VII (north) medium to good gluten and starch quality, but low milling quality; those from Zone VIII (central northwest) medium milling and starch quality, and medium to strong mixograph performance; those from Zone IX (western/southwestern Qinghai-Tibetan Plateau) medium milling quality, but poor gluten strength and starch parameters; and those from Zone X (northwest) high milling quality, strong mixograph properties, but low protein content. Samples from Harbin are characterized by good gluten and starch quality, but medium to poor milling quality; those from Hongxinglong by strong mixograph properties, medium to high milling quality, but medium to poor starch quality and medium to low protein content; those from Hohhot by good gluten but poor milling quality; those from Linhe by weak gluten quality, medium to poor milling quality; those from Lanzhou by poor bread-making and starch quality; those from Yongning by acceptable bread-making and starch quality and good milling quality; and those from Urumqi by good milling quality, medium gluten quality and good starch pasting parameters. Our findings suggest that Chinese SSSW quality could be greatly enhanced through genetic improvement for targeted well-characterized production environments.