952 resultados para Gas-solid Flow


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We calculate tangential momentum coefficients for the exchange of momentum between molecules in transport and the internal surface of a membrane pore, modelled as a simple atomic structure. We introduce a local specular reflection (LSR) hypothesis, which states that impinging molecules undergo mirror-like reflection in a plane tangent to a surface atom at the point of impact. As a consequence, the components of the velocity, parallel to the direction of flow will (in general) change on impact. The overall effect is a loss of tangential momentum, since more is lost in the upstream direction than is gained in the downstream direction. The loss of tangential momentum is greater when the size ratio of fluid to solid atom is small, allowing more steeply inclined impact planes to become accessible to the fluid phase molecules. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work is concerned with a study of certain phenomena related to the performance and design of distributors in gas fluidized beds with particular regard to flowback of solid particles. The work to be described is divided into two parts. I. In Part one, a review of published material pertaining to distribution plates, including details from the patent specifications, has been prepared. After a chapter on the determination of the incipient fluidizing velocity, the following aspects of multi-orifice distributor plates in gas fluidized beds have been studied: (i) The effect of the distributor on bubble formation related to the way in which even distribution of bubbles on the top surface of the fluidized bed is obtained, e.g. the desirable pressure drop ratio ?PD/?PB for the even distribution of gas across the bed. Ratios of distributor pressure drop ?PD to bed pressure drop at which stable fluidization occurs show reasonable agreement with industrial practice. There is evidence that larger diameter beds tend to be less stable than smaller diameter beds when these are operated with shallow beds. Experiments show that in the presence of the bed the distributor pressure drop is reduced relative to the pressure drop without the bed, and this pressure drop in the former condition is regarded as the appropriate parameter for the design of the distributor. (ii) Experimental measurements of bubble distribution at the surface has been used to indicate maldistribution within the bed. Maldistribution is more likely at low gas flow rates and with distributors having large fractional free area characteristics (i.e. with distributors having low pressure drops). Bubble sizes obtained from this study, as well as those of others, have been successfully correlated. The correlation produced implies the existence of a bubble at the surface of an orifice and its growth by the addition of excess gas from the fluidized bed. (iii) For a given solid system, the amount of defluidized particles stagnating on the distributor plate is influenced by the orifice spacing, bed diameter and gas flow rate, but independent of the initial bed height and the way the orifices are arranged on the distributor plate. II. In Part two, solids flowback through single and multi-orifice distributors in two-dimensional and cylindrical beds of solids fluidized with air has been investigated. Distributors equipped with long cylindrical nozzles have also been included in the study. An equation for the prediction of free flowback of solids through multi-orifice distributors has been derived. Under fluidized conditions two regimes of flowback have been differentiated, namely Jumping and weeping. Data in the weeping regime have been successfully correlated. The limiting gas velocity through the distributor orifices at which flowback is completely excluded is found to be indepnndent of bed height, but a function of distributor design and physical properties of gas and solid used. A criterion for the prediction of this velocity has been established. The decisive advantage of increasing the distributor thickness or using nozzles to minimize solids flowback in fluidized beds has been observed and the opportunity taken to explore this poorly studied subject area. It has been noted, probably for the first time, that with long nozzles, there exists a critical nozzle length above which uncontrollable downflow of solids occurs. A theoretical model for predicting the critical length of a bundle of nozzles in terms of gas velocity through the nozzles has been set up. Theoretical calculations compared favourably with experiments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Петър Господинов, Добри Данков, Владимир Русинов, Стефан Стефанов - Изследвано е цилиндрично течение на Кует за разреден газ между два въртящи се цилиндъра. Получени са профилите на налягането, скоростта и температурата по метода на прякото статистическо моделиране (DSMC) и чрез числено решаване на уравненията на Навие-Стокс за свиваем флуид. Резултатите сочат много добро съвпадение за малки числа на Кнудсен Kn = 0.02. Показано е, че при различни кинематични гранични условия, газът изостава или избързва спрямо скоростта на стената, или има поведение на твърдо еластично тяло. Получените резултати са важни при решаването на неравнинни, задачи от микрофлуидиката с отчитане на ефектите на кривината.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Петър Господинов, Добри Данков, Владимир Русинов, Стефан Стефанов - Иследвано е цилиндрично течение на Кует на разреден газ в случая на въртене на два коаксиални цилиндъра с еднакви по големина скорости, но в различни посоки. Целта на изследването е да се установи влиянието на малки скорости на въртене върху макрохарактеристиките – ρ, V , . Числените резултати са получени чрез използване на DSMC и числено решение на уравненията на Навие-Стокс за относително малки (дозвукови) скорости на въртене. Установено е добро съвпадение на резултатите получени по двата метода за Kn = 0.02. Установено е, че съществува “стационарна” точка за плътността и скоростта. Получените резултати са важни при решаването на неравнини, задачи от микрофлуидиката с отчитане на ефектите на кривината. Ключови думи: Механика на флуидите, Кинетична теория, Разреден газ, DSMC

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Петър Господинов, Добри Данков, Владимир Русинов, Стефан Стефанов - Изследвано е стационарно течение на Кует на разреден газ в случая на въртене на вътрешния цилиндър и неподвижен външен цилиндър чрез използване на DSMC метод и числено решение на уравненията на Навие–Стокс за относително малка (дозвукова) скорост на въртене. Изследвани са различни случаи при промяна на температурата на въртящият се цилиндър и числото на Кнудсен. Целта на изследването е да се установи влиянието на малки скорости на въртене върху макрохарактеристиките – плътността, скоростта и температурата на газа. Установено е добро съвпадение на резултатите получени по двата метода за Kn = 0.02. Получените резултати са важни при решаването на неравнинни, задачи от микрофлуидиката с отчитане на ефектите на кривината. Ключови думи: механика на флуидите, кинетична теория, разреден газ, DSMC.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The potential of solid phase microextraction (SPME) in the analysis of explosives is demonstrated. A sensitive, rapid, solventless and inexpensive method for the analysis of explosives and explosive odors from solid and liquid samples has been optimized using SPME followed by HPLC and GC/ECD. SPME involves the extraction of the organic components in debris samples into sorbent-coated silica fibers, which can be transferred directly to the injector of a gas chromatograph. SPME/HPLC requires a special desorption apparatus to elute the extracted analyte onto the column at high pressure. Results for use of GC/ECD is presented and compared to the results gathered by using HPLC analysis. The relative effects of controllable variables including fiber chemistry, adsorption and desorption temperature, extraction time, and desorption time have been optimized for various high explosives. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent technological developments have made it possible to design various microdevices where fluid flow and heat transfer are involved. For the proper design of such systems, the governing physics needs to be investigated. Due to the difficulty to study complex geometries in micro scales using experimental techniques, computational tools are developed to analyze and simulate flow and heat transfer in microgeometries. However, conventional numerical methods using the Navier-Stokes equations fail to predict some aspects of microflows such as nonlinear pressure distribution, increase mass flow rate, slip flow and temperature jump at the solid boundaries. This necessitates the development of new computational methods which depend on the kinetic theory that are both accurate and computationally efficient. In this study, lattice Boltzmann method (LBM) was used to investigate the flow and heat transfer in micro sized geometries. The LBM depends on the Boltzmann equation which is valid in the whole rarefaction regime that can be observed in micro flows. Results were obtained for isothermal channel flows at Knudsen numbers higher than 0.01 at different pressure ratios. LBM solutions for micro-Couette and micro-Poiseuille flow were found to be in good agreement with the analytical solutions valid in the slip flow regime (0.01 < Kn < 0.1) and direct simulation Monte Carlo solutions that are valid in the transition regime (0.1 < Kn < 10) for pressure distribution and velocity field. The isothermal LBM was further extended to simulate flows including heat transfer. The method was first validated for continuum channel flows with and without constrictions by comparing the thermal LBM results against accurate solutions obtained from analytical equations and finite element method. Finally, the capability of thermal LBM was improved by adding the effect of rarefaction and the method was used to analyze the behavior of gas flow in microchannels. The major finding of this research is that, the newly developed particle-based method described here can be used as an alternative numerical tool in order to study non-continuum effects observed in micro-electro-mechanical-systems (MEMS).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent technological developments have made it possible to design various microdevices where fluid flow and heat transfer are involved. For the proper design of such systems, the governing physics needs to be investigated. Due to the difficulty to study complex geometries in micro scales using experimental techniques, computational tools are developed to analyze and simulate flow and heat transfer in microgeometries. However, conventional numerical methods using the Navier-Stokes equations fail to predict some aspects of microflows such as nonlinear pressure distribution, increase mass flow rate, slip flow and temperature jump at the solid boundaries. This necessitates the development of new computational methods which depend on the kinetic theory that are both accurate and computationally efficient. In this study, lattice Boltzmann method (LBM) was used to investigate the flow and heat transfer in micro sized geometries. The LBM depends on the Boltzmann equation which is valid in the whole rarefaction regime that can be observed in micro flows. Results were obtained for isothermal channel flows at Knudsen numbers higher than 0.01 at different pressure ratios. LBM solutions for micro-Couette and micro-Poiseuille flow were found to be in good agreement with the analytical solutions valid in the slip flow regime (0.01 < Kn < 0.1) and direct simulation Monte Carlo solutions that are valid in the transition regime (0.1 < Kn < 10) for pressure distribution and velocity field. The isothermal LBM was further extended to simulate flows including heat transfer. The method was first validated for continuum channel flows with and without constrictions by comparing the thermal LBM results against accurate solutions obtained from analytical equations and finite element method. Finally, the capability of thermal LBM was improved by adding the effect of rarefaction and the method was used to analyze the behavior of gas flow in microchannels. The major finding of this research is that, the newly developed particle-based method described here can be used as an alternative numerical tool in order to study non-continuum effects observed in micro-electro-mechanical-systems (MEMS).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The potential of solid phase microextraction (SPME) in the analysis of explosives is demonstrated. A sensitive, rapid, solventless and inexpensive method for the analysis of explosives and explosive odors from solid and liquid samples has been optimized using SPME followed by HPLC and GC/ECD. SPME involves the extraction of the organic components in debris samples into sorbent-coated silica fibers, which can be transferred directly to the injector of a gas chromatograph. SPME/HPLC requires a special desorption apparatus to elute the extracted analyte onto the column at high pressure. Re suits for use of GC[ECD is presented and compared to the results gathered by using HPLC analysis. The relative effects of controllable variables including fiber chemistry, adsorption and desorption temperature, extraction time, and desorption time have been optimized for various high explosives.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Gas phase photoreforming of methanol using a Pt/TiO2 photocatalyst has been performed under flow conditions at elevated temperatures. Comparing the activity of the reforming process as a function of temperature under dark and irradiated conditions shows a significant enhancement in the rate of H2 production using the photo-assisted conditions at temperatures between 100-140 °C. At higher temperatures, the effect of irradiation is small with the process dominated by the thermal process. Deactivation of the catalyst was observed under irradiation but the catalyst was easily regenerated using an oxygen treatment at 120 °C. Diffuse Reflectance Infra-red Fourier Transform Spectroscopy (DRIFTS) showed that the activity of the catalyst could be correlated with the presence of the photogenerated trapped electrons. In addition, lower amounts of CO adsorbed on Pt, compared to those observed in the dark reaction, were found for the UV-irradiated systems. It is proposed that CO and adsorbed intermediates, such as formate, can act as inhibitors in the photoreforming process and this is further supported by the observation that, before and after the regeneration process in O2, the CO and surface adsorbed organic intermediate products are removed and the activity is recovered.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Title of dissertation: MAGNETIC AND ACOUSTIC INVESTIGATIONS OF TURBULENT SPHERICAL COUETTE FLOW Matthew M. Adams, Doctor of Philosophy, 2016 Dissertation directed by: Professor Daniel Lathrop Department of Physics This dissertation describes experiments in spherical Couette devices, using both gas and liquid sodium. The experimental geometry is motivated by the Earth's outer core, the seat of the geodynamo, and consists of an outer spherical shell and an inner sphere, both of which can be rotated independently to drive a shear flow in the fluid lying between them. In the case of experiments with liquid sodium, we apply DC axial magnetic fields, with a dominant dipole or quadrupole component, to the system. We measure the magnetic field induced by the flow of liquid sodium using an external array of Hall effect magnetic field probes, as well as two probes inserted into the fluid volume. This gives information about possible velocity patterns present, and we extend previous work categorizing flow states, noting further information that can be extracted from the induced field measurements. The limitations due to a lack of direct velocity measurements prompted us to work on developing the technique of using acoustic modes to measure zonal flows. Using gas as the working fluid in our 60~cm diameter spherical Couette experiment, we identified acoustic modes of the container, and obtained excellent agreement with theoretical predictions. For the case of uniform rotation of the system, we compared the acoustic mode frequency splittings with theoretical predictions for solid body flow, and obtained excellent agreement. This gave us confidence in extending this work to the case of differential rotation, with a turbulent flow state. Using the measured splittings for this case, our colleagues performed an inversion to infer the pattern of zonal velocities within the flow, the first such inversion in a rotating laboratory experiment. This technique holds promise for use in liquid sodium experiments, for which zonal flow measurements have historically been challenging.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The dissipation or triadimefon, as pure solid and in the Bayleton 5 commercial formulation, was studied under controlled and natural conditions. Volatilization and photodegradation were shown to be the main dissipation processes. The volatilization results can be described by an empirical model assuming exponential decay of the volatilization rate. The filler of the commercial formulation is determinant for the volatilization but has little effect on the photodegradation rates. The main photoproducts were identified and a reaction mechanism proposed. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pure Tungsten Oxide (WO3) and Iron-doped (10 at%) Tungsten Oxide (WO3:Fe) nanostructured thin films were prepared using a dual crucible Electron Beam Evaporation techniques. The films were deposited at room temperature in high vacuum condition on glass substrate and post-heat treated at 300 oC for 1 hour. From the study of X-ray diffraction and Raman the characteristics of the as-deposited WO3 and WO3:Fe films indicated non-crystalline nature. The surface roughness of all the films showed in the order of 2.5 nm as observed using Atomic Force Microscopy (AFM). X-Ray Photoelectron Spectroscopy (XPS) analysis revealed tungsten oxide films with stoichiometry close to WO3. The addition of Fe to WO3 produced a smaller particle size and lower porosity as observed using Transmission Electron Microscopy (TEM). A slight difference in optical band gap energies of 3.22 eV and 3.12 eV were found between the as-deposited WO3 and WO3:Fe films, respectively. However, the difference in the band gap energies of the annealed films were significantly higher having values of 3.12 eV and 2.61 eV for the WO3 and WO3:Fe films, respectively. The heat treated samples were investigated for gas sensing applications using noise spectroscopy and doping of Fe to WO3 reduced the sensitivity to certain gasses. Detailed study of the WO3 and WO3:Fe films gas sensing properties is the subject of another paper.