951 resultados para Gas Hold-Up


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We derive observed H alpha and R-band luminosity densities of an H I-selected sample of nearby galaxies using the SINGG sample to be l'(H alpha) = (9.4 +/- 1.8) x 10(38) h(70) ergs s(-1) Mpc(-3) for H alpha and l'(R) = (4.4 +/- 9.7) x 10(37) h(70) ergs s(-1) angstrom(-1) Mpc(-3) in the R band. This R-band luminosity density is approximately 70% of that found by the Sloan Digital Sky Survey. This leads to a local star formation rate density of log ((rho)over dot(SFR) [M-circle dot yr(-1) Mpc(-3)]) = -1.80(-0.07)(+0.13)(random) +/- 0.03(systematic) + log (h(70)) after applying a mean internal extinction correction of 0.82 mag. The gas cycling time of this sample is found to be t(gas) = 7.5(-2.1)(+1.3) Gyr, and the volume-averaged equivalent width of the SINGG galaxies is EW(H alpha) = 28.8(-4.7)(+7.2) angstrom (21.2-3.5+4.2 angstrom without internal dust correction). As with similar surveys, these results imply that (rho)over dot(SFR)(z) decreases drastically from z similar to 1.5 to the present. A comparison of the dynamical masses of the SINGG galaxies evaluated at their optical limits with their stellar and H I masses shows significant evidence of downsizing: the most massive galaxies have a larger fraction of their mass locked up in stars compared with H I, while the opposite is true for less massive galaxies. We show that the application of the Kennicutt star formation law to a galaxy having the median orbital time at the optical limit of this sample results in a star formation rate decay with cosmic time similar to that given by the. (rho)over dot(SFR)(z) evolution. This implies that the (rho)over dot(SFR)(z) evolution is primarily due to the secular evolution of galaxies, rather than interactions or mergers. This is consistent with the morphologies predominantly seen in the SINGG sample.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is important to maintain a uniform distribution of gas and liquid in large diameter packed columns to maintain mass transfer efficiency on scaling up. This work presents measurements and methods of evaluating maldistributed gas flow in packed columns. Little or no previous work has been done in this field. A gas maldistribution number, F, was defined, based on point to point velocity variations in the gas emerging from the top of packed beds. f has a minimum value for a uniformly distributed flow and much larger values for maldistributed flows. A method of testing the quality of vapour distributors is proposed, based on "the variation of f with packed height. A good gas distributor requires a short packed depth to give a good gas distribution. Measurements of gas maldistribution have shown that the principle of dynamic similarity is satisfied if two geometrically similar beds are operated at the same Reynold's number. The validity of f as a good measure of gas maldistribution, and the principle of dynamic similarity are tested statistically by Multi-Factor Analysis of the variance, and visually by the response "surfaces technique. Pressure distribution has been measured in a model of a large diameter packed bed, and shown to be associated with the velocity of the gas in a tangential feed pipe. Two simplified theoretical models are proposed to describe the flow of gases through packed beds and to support the principle of dynamic similarity. These models explain why the packed bed itself causes the flow of gas to become more uniformly distributed. A 1.2m. diameter scaled-down model was constructed geometrically similar to a 7.3m. diameter vacuum crude distillation column. The previously known internal cylinder gas distributor was tested. Three new distributors suitable for use in a large diameter column were developed and tested, these are: Internal Cylinder with Slots and Cross Baffles, Internal Cylinder with Guides in the Annulus, Internal Cylinder with Internal Cross Baffles - It has been shown that this is an excellent distributor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is concerned with a study of certain phenomena related to the performance and design of distributors in gas fluidized beds with particular regard to flowback of solid particles. The work to be described is divided into two parts. I. In Part one, a review of published material pertaining to distribution plates, including details from the patent specifications, has been prepared. After a chapter on the determination of the incipient fluidizing velocity, the following aspects of multi-orifice distributor plates in gas fluidized beds have been studied: (i) The effect of the distributor on bubble formation related to the way in which even distribution of bubbles on the top surface of the fluidized bed is obtained, e.g. the desirable pressure drop ratio ?PD/?PB for the even distribution of gas across the bed. Ratios of distributor pressure drop ?PD to bed pressure drop at which stable fluidization occurs show reasonable agreement with industrial practice. There is evidence that larger diameter beds tend to be less stable than smaller diameter beds when these are operated with shallow beds. Experiments show that in the presence of the bed the distributor pressure drop is reduced relative to the pressure drop without the bed, and this pressure drop in the former condition is regarded as the appropriate parameter for the design of the distributor. (ii) Experimental measurements of bubble distribution at the surface has been used to indicate maldistribution within the bed. Maldistribution is more likely at low gas flow rates and with distributors having large fractional free area characteristics (i.e. with distributors having low pressure drops). Bubble sizes obtained from this study, as well as those of others, have been successfully correlated. The correlation produced implies the existence of a bubble at the surface of an orifice and its growth by the addition of excess gas from the fluidized bed. (iii) For a given solid system, the amount of defluidized particles stagnating on the distributor plate is influenced by the orifice spacing, bed diameter and gas flow rate, but independent of the initial bed height and the way the orifices are arranged on the distributor plate. II. In Part two, solids flowback through single and multi-orifice distributors in two-dimensional and cylindrical beds of solids fluidized with air has been investigated. Distributors equipped with long cylindrical nozzles have also been included in the study. An equation for the prediction of free flowback of solids through multi-orifice distributors has been derived. Under fluidized conditions two regimes of flowback have been differentiated, namely Jumping and weeping. Data in the weeping regime have been successfully correlated. The limiting gas velocity through the distributor orifices at which flowback is completely excluded is found to be indepnndent of bed height, but a function of distributor design and physical properties of gas and solid used. A criterion for the prediction of this velocity has been established. The decisive advantage of increasing the distributor thickness or using nozzles to minimize solids flowback in fluidized beds has been observed and the opportunity taken to explore this poorly studied subject area. It has been noted, probably for the first time, that with long nozzles, there exists a critical nozzle length above which uncontrollable downflow of solids occurs. A theoretical model for predicting the critical length of a bundle of nozzles in terms of gas velocity through the nozzles has been set up. Theoretical calculations compared favourably with experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heat pumps are becoming increasingly popular, but poor electricity generating efficiency limits the potential energy savings of electrically powered units. Thus the work reported in this thesis concerns the development of a range of gas engine driven heat pumps for industrial and commercial heating applications, which recover heat from the prime mover, normally rejected to waste. Despite the convenience of using proprietary engine heat recovery packages, investigations have highlighted the necessity to ensure the engine and the heat recovery equipment are compatible. A problem common •to all air source heat pumps is the formation of frost on the evaporator, which must be removed periodically, with the expenditure of energy, to ensure the continued operation of the plant. An original fluidised bed defrosting mechanism is proposed, which prevents the build-up of this frost, and also improves system performance. Criticisms have been levelled against the rotary sliding vane compressor, in particular the effects of lubrication, which is essential. This thesis compares the rotary sliding vane compressor with other machines, and concludes that many of these criticisms are unfounded. A confidential market survey indicates an increasing demand for heat pumps up to and including 1990, and the technical support needed to penetrate this market is presented. Such support includes the development of a range of modular gas engine driven heat pumps, and a computer aided design for the selection of the optimum units. A case study of a gas engine driven heat pump for a swimming pool application which provided valuable experience is included.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study has been made of the effects of welding and material variables on the occurrence of porosity in tungsten inert gas arc welding of copper. The experiments were based on a statistical design and variables included, welding current, welding speed, arc atmosphere composition, inert gas flow rate, weld preparation, and base material. The extent of weld metal porosity was assessed by density measurement and its morphology by X-ray radiography and metallography. In conjunction with this the copper-steam reaction has been investigated under conditions of controlled atmosphere arc melting. The welding experiments have shown that the extent of steam porosity is increased by increased water vapour content of the arc atmosphere, increased oxygen content of the base material and decreased welding speed. The arc melting experiments have shown that the steam reaction occurs in the body of the weld pool and proceeds to an apparent equi1ibrium state appropriate to to its temperature, the hydrogen and oxygen being supplied by the dissociation of water vapour in the arc atmosphere. It has been shown conclusively that nitrogen porosity can occur in the tungsten inert gas arc welding of copper and that this porosity can be eliminated by using filler wires containing small amounts of aluminum and titanium. Since it has been shown to be much more difficult to produce sound butt welds than melt runs it has been concluded that the porosity associated with joint fit up is due to nitrogen entrained into tho arc atmosphere. Clearly atmospheric entrainment would also, to a much lesser extent, involve water vapour. From a practical welding point of view it has thus been postulated that use of a filler wire containing small amounts of aluminum and/or titanium would eliminate both forms of porosity since these elements are both strongJy deoxidising and denitriding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study presents the first part of a CFD study on the performance of a downer reactor for biomass pyrolysis. The reactor was equipped with a novel gas-solid separation method, developed by the co-authors from the ICFAR (Canada). The separator, which was designed to allow for fast separation of clean pyrolysis gas, consisted of a cone deflector and a gas exit pipe installed inside the downer reactor. A multi-fluid model (Eulerian-Eulerian) with constitutive relations adopted from the kinetic theory of granular flow was used to simulate the multiphase flow. The effects of the various parameters including operation conditions, separator geometry and particle properties on the overall hydrodynamics and separation efficiency were investigated. The model prediction of the separator efficiency was compared with experimental measurements. The results revealed distinct hydrodynamic features around the cone separator, allowing for up to 100% separation efficiency. The developed model provided a platform for the second part of the study, where the biomass pyrolysis is simulated and the product quality as a function of operating conditions is analyzed. Crown Copyright © 2014 Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cu/CeO2, Pd/CeO2, and CuPd/CeO2 catalysts were prepared and their reduction followed by in-situ XPS in order to explore promoter and support interactions in a bimetallic CuPd/CeO2 catalyst effective for the oxygen-assisted water-gas-shift (OWGS) reaction. Mutual interactions between Cu, Pd, and CeO2 components all affect the reduction process. Addition of only 1 wt% Pd to 30 wt% Cu/CeO2 greatly enhances the reducibility of both dispersed CuO and ceria support. In-vacuo reduction (inside XPS chamber) up to 400 °C results in a continuous growth of metallic copper and Ce3+ surface species, although higher temperatures results in support reoxidation. Supported copper in turn destabilizes metallic palladium metal with respect to PdO, this mutual perturbation indicating a strong intimate interaction between the Cu–Pd components. Despite its lower intrinsic reactivity towards OWGS, palladium addition at only 1 wt% loading significantly improved CO conversion in OWGS reaction over a monometallic 30 wt% Cu/CeO2 catalysts, possibly by helping to maintain Cu in a reduced state during reaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objects of a large-scale gas-transport company (GTC) suggest a complex unified evolutionary approach, which covers basic building concepts, up-to-date technologies, models, methods and means that are used in the phases of design, adoption, maintenance and development of the multilevel automated distributed control systems (ADCS).. As a single methodological basis of the suggested approach three basic Concepts, which contain the basic methodological principles and conceptual provisions on the creation of distributed control systems, were worked out: systems of the lower level (ACS of the technological processes based on up-to-date SCADA), of the middle level (ACS of the operative-dispatch production control based on MES-systems) and of the high level (business process control on the basis of complex automated systems ERP).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the modification of the optical properties of carbon nanotubes (CNTs) resulting from a chemical reaction triggered by the presence of a specific compound (gaseous carbon dioxide (CO2)) and show this mechanism has important consequences for chemical sensing. CNTs have attracted significant research interest because they can be functionalized for a particular chemical, yielding a specific physical response which suggests many potential applications in the fields of nanotechnology and sensing. So far, however, utilizing their optical properties for this purpose has proven to be challenging. We demonstrate the use of localized surface plasmons generated on a nanostructured thin film, resembling a large array of nano-wires, to detect changes in the optical properties of the CNTs. Chemical selectivity is demonstrated using CO2 in gaseous form at room temperature. The demonstrated methodology results additionally in a new, electrically passive, optical sensing configuration that opens up the possibilities of using CNTs as sensors in hazardous/explosive environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tin oxide is considered to be one of the most promising semiconductor oxide materials for use as a gas sensor. However, a simple route for the controllable build-up of nanostructured, sufficiently pure and hierarchical SnO2 structures for gas sensor applications is still a challenge. In the current work, an aqueous SnO2 nanoparticulate precursor sol, which is free of organic contaminants and sorbed ions and is fully stable over time, was prepared in a highly reproducible manner from an alkoxide Sn(OR)4 just by mixing it with a large excess of pure neutral water. The precursor is formed as a separate liquid phase. The structure and purity of the precursor is revealed using XRD, SAXS, EXAFS, HRTEM imaging, FTIR, and XRF analysis. An unconventional approach for the estimation of the particle size based on the quantification of the Sn-Sn contacts in the structure was developed using EXAFS spectroscopy and verified using HRTEM. To construct sensors with a hierarchical 3D structure, we employed an unusual emulsification technique not involving any additives or surfactants, using simply the extraction of the liquid phase, water, with the help of dry butanol under ambient conditions. The originally generated crystalline but yet highly reactive nanoparticles form relatively uniform spheres through self-assembly and solidify instantly. The spheres floating in butanol were left to deposit on the surface of quartz plates bearing sputtered gold electrodes, producing ready-for-use gas sensors in the form of ca. 50 μm thick sphere-based-films. The films were dried for 24 h and calcined at 300°C in air before use. The gas sensitivity of the structures was tested in the temperature range of 150-400°C. The materials showed a very quickly emerging and reversible (20-30 times) increase in electrical conductivity as a response to exposure to air containing 100 ppm of H2 or CO and short (10 s) recovery times when the gas flow was stopped.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The general method for determining organomercurials in environmental and biological samples is gas chromatography with electron capture detection (GC-ECD). However, tedious sample work up protocols and poor chromatographic response show the need for the development of new methods. Here, Atomic Fluorescence-based methods are described, free from these deficiencies. The organomercurials in soil, sediment and tissue samples are first released from the matrices with acidic KBr and cupric ions and extracted into dichloromethane. The initial extracts are subjected to thiosulfate clean up and the organomercury species are isolated as their chloride derivatives by cupric chloride and subsequent extraction into a small volume of dichloromethane. In water samples the organomercurials are pre-concentrated using a sulfhydryl cotton fiber adsorbent, followed by elution with acidic KBr and CuSO 4 and extraction into dichloromethane. Analysis of the organomercurials is accomplished by capillary column chromatography with atomic fluorescence detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The occurrence of gas hydrates at submarine mud volcanoes (MVs) located within the gas hydrate stability zone (GHSZ) is controlled by upward fluid and heat flux associated with MV activity. Determining the spatial distribution of gas hydrates at MVs is crucial to evaluate their sensitivity to known episodic changes in volcanic activity. We determined the hydrocarbon inventory and spatial distribution of hydrates at an individual MV structure. The Håkon Mosby Mud Volcano (HMMV), located at 1,250 m water depth on the Barents Sea slope, was investigated by combined pressure core sampling, heat flow measurements, and pore water chemical analysis. Quantitative pressure core degassing revealed gas-sediment ratios between 3.1 and 25.7, corresponding to hydrate concentrations of up to 21.3% of the pore volume. Hydrocarbon compositions and physicochemical conditions imply that gas hydrates incipiently crystallize as structure I hydrate, with a dissociation temperature of around 13.8°C at this water depth. Based on numerous in situ measurements of the geothermal gradient in the seabed, pore water sulfate profiles and microbathymetric data, we show that the thickness of the GHSZ increases from less than 1 m at the warm center to around 47 m in the outer parts of the HMMV. We estimate the total mass of hydrate-bound methane stored at the HMMV to be about 102.5 kt, of which 2.8 kt are located within the morphological Unit I around the center and thus are likely to be dissociated in the course of a large eruption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vodyanitskii mud volcano is located at a depth of about 2070 m in the Sorokin Trough, Black sea. It is a 500-m wide and 20-m high cone surrounded by a depression, which is typical of many mud volcanoes in the Black Sea. 75 kHz sidescan sonar show different generations of mud flows that include mud breccia, authigenic carbonates, and gas hydrates that were sampled by gravity coring. The fluids that flow through or erupt with the mud are enriched in chloride (up to 650 mmol L**-1 at 150-cm sediment depth) suggesting a deep source, which is similar to the fluids of the close-by Dvurechenskii mud volcano. Direct observation with the remotely operated vehicle Quest revealed gas bubbles emanating at two distinct sites at the crest of the mud volcano, which confirms earlier observations of bubble-induced hydroacoustic anomalies in echosounder records. The sediments at the main bubble emission site show a thermal anomaly with temperatures at 60 cm sediment depth that were 0.9 °C warmer than the bottom water. Chemical and isotopic analyses of the emanated gas revealed that it consisted primarily of methane (99.8%) and was of microbial origin (dD-CH4 = -170.8 per mil (SMOW), d13C-CH4 = -61.0 per mil (V-PDB), d13C-C2H6 = -44.0 per mil (V-PDB)). The gas flux was estimated using the video observations of the ROV. Assuming that the flux is constant with time, about 0.9 ± 0.5 x 10**6 mol of methane is released every year. This value is of the same order-of-magnitude as reported fluxes of dissolved methane released with pore water at other mud volcanoes. This suggests that bubble emanation is a significant pathway transporting methane from the sediments into the water column.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wetland ecosystems provide many valuable ecosystem services, including carbon (C) storage and improvement of water quality. Yet, restored and managed wetlands are not frequently evaluated for their capacity to function in order to deliver on these values. Specific restoration or management practices designed to meet one set of criteria may yield unrecognized biogeochemical costs or co-benefits. The goal of this dissertation is to improve scientific understanding of how wetland restoration practices and waterfowl habitat management affect critical wetland biogeochemical processes related to greenhouse gas emissions and nutrient cycling. I met this goal through field and laboratory research experiments in which I tested for relationships between management factors and the biogeochemical responses of wetland soil, water, plants and trace gas emissions. Specifically, I quantified: (1) the effect of organic matter amendments on the carbon balance of a restored wetland; (2) the effectiveness of two static chamber designs in measuring methane (CH4) emissions from wetlands; (3) the impact of waterfowl herbivory on the oxygen-sensitive processes of methane emission and coupled nitrification-denitrification; and (4) nitrogen (N) exports caused by prescribed draw down of a waterfowl impoundment.

The potency of CH4 emissions from wetlands raises the concern that widespread restoration and/or creation of freshwater wetlands may present a radiative forcing hazard. Yet data on greenhouse gas emissions from restored wetlands are sparse and there has been little investigation into the greenhouse gas effects of amending wetland soils with organic matter, a recent practice used to improve function of mitigation wetlands in the Eastern United States. I measured trace gas emissions across an organic matter gradient at a restored wetland in the coastal plain of Virginia to test the hypothesis that added C substrate would increase the emission of CH4. I found soils heavily loaded with organic matter emitted significantly more carbon dioxide than those that have received little or no organic matter. CH4 emissions from the wetland were low compared to reference wetlands and contrary to my hypothesis, showed no relationship with the loading rate of added organic matter or total soil C. The addition of moderate amounts of organic matter (< 11.2 kg m-2) to the wetland did not greatly increase greenhouse gas emissions, while the addition of high amounts produced additional carbon dioxide, but not CH4.

I found that the static chambers I used for sampling CH4 in wetlands were highly sensitive to soil disturbance. Temporary compression around chambers during sampling inflated the initial chamber CH4 headspace concentration and/or lead to generation of nonlinear, unreliable flux estimates that had to be discarded. I tested an often-used rubber-gasket sealed static chamber against a water-filled-gutter seal chamber I designed that could be set up and sampled from a distance of 2 m with a remote rod sampling system to reduce soil disturbance. Compared to the conventional design, the remotely-sampled static chambers reduced the chance of detecting inflated initial CH4 concentrations from 66 to 6%, and nearly doubled the proportion of robust linear regressions from 45 to 86%. The new system I developed allows for more accurate and reliable CH4 sampling without costly boardwalk construction.

I explored the relationship between CH4 emissions and aquatic herbivores, which are recognized for imposing top-down control on the structure of wetland ecosystems. The biogeochemical consequences of herbivore-driven disruption of plant growth, and in turn, mediated oxygen transport into wetland sediments, were not previously known. Two growing seasons of herbivore exclusion experiments in a major waterfowl overwintering wetland in the Southeastern U.S. demonstrate that waterfowl herbivory had a strong impact on the oxygen-sensitive processes of CH4 emission and nitrification. Denudation by herbivorous birds increased cumulative CH4 flux by 233% (a mean of 63 g CH4 m-2 y-1) and inhibited coupled nitrification-denitrification, as indicated by nitrate availability and emissions of nitrous oxide. The recognition that large populations of aquatic herbivores may influence the capacity for wetlands to emit greenhouse gases and cycle nitrogen is particularly salient in the context of climate change and nutrient pollution mitigation goals. For example, our results suggest that annual emissions of 23 Gg of CH4 y-1 from ~55,000 ha of publicly owned waterfowl impoundments in the Southeastern U.S. could be tripled by overgrazing.

Hydrologically controlled moist-soil impoundment wetlands provide critical habitat for high densities of migratory bird populations, thus their potential to export nitrogen (N) to downstream waters may contribute to the eutrophication of aquatic ecosystems. To investigate the relative importance of N export from these built and managed habitats, I conducted a field study at an impoundment wetland that drains into hypereutrophic Lake Mattamuskeet. I found that prescribed hydrologic drawdowns of the impoundment exported roughly the same amount of N (14 to 22 kg ha-1) as adjacent fertilized agricultural fields (16 to 31 kg ha-1), and contributed approximately one-fifth of total N load (~45 Mg N y-1) to Lake Mattamuskeet. Ironically, the prescribed drawdown regime, designed to maximize waterfowl production in impoundments, may be exacerbating the degradation of habitat quality in the downstream lake. Few studies of wetland N dynamics have targeted impoundments managed to provide wildlife habitat, but a similar phenomenon may occur in some of the 36,000 ha of similarly-managed moist-soil impoundments on National Wildlife Refuges in the southeastern U.S. I suggest early drawdown as a potential method to mitigate impoundment N pollution and estimate it could reduce N export from our study impoundment by more than 70%.

In this dissertation research I found direct relationships between wetland restoration and impoundment management practices, and biogeochemical responses of greenhouse gas emission and nutrient cycling. Elevated soil C at a restored wetland increased CO2 losses even ten years after the organic matter was originally added and intensive herbivory impact on emergent aquatic vegetation resulted in a ~230% increase in CH4 emissions and impaired N cycling and removal. These findings have important implications for the basic understanding of the biogeochemical functioning of wetlands and practical importance for wetland restoration and impoundment management in the face of pressure to mitigate the environmental challenges of global warming and aquatic eutrophication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Terrestrial ecosystems, occupying more than 25% of the Earth's surface, can serve as

`biological valves' in regulating the anthropogenic emissions of atmospheric aerosol

particles and greenhouse gases (GHGs) as responses to their surrounding environments.

While the signicance of quantifying the exchange rates of GHGs and atmospheric

aerosol particles between the terrestrial biosphere and the atmosphere is

hardly questioned in many scientic elds, the progress in improving model predictability,

data interpretation or the combination of the two remains impeded by

the lack of precise framework elucidating their dynamic transport processes over a

wide range of spatiotemporal scales. The diculty in developing prognostic modeling

tools to quantify the source or sink strength of these atmospheric substances

can be further magnied by the fact that the climate system is also sensitive to the

feedback from terrestrial ecosystems forming the so-called `feedback cycle'. Hence,

the emergent need is to reduce uncertainties when assessing this complex and dynamic

feedback cycle that is necessary to support the decisions of mitigation and

adaptation policies associated with human activities (e.g., anthropogenic emission

controls and land use managements) under current and future climate regimes.

With the goal to improve the predictions for the biosphere-atmosphere exchange

of biologically active gases and atmospheric aerosol particles, the main focus of this

dissertation is on revising and up-scaling the biotic and abiotic transport processes

from leaf to canopy scales. The validity of previous modeling studies in determining

iv

the exchange rate of gases and particles is evaluated with detailed descriptions of their

limitations. Mechanistic-based modeling approaches along with empirical studies

across dierent scales are employed to rene the mathematical descriptions of surface

conductance responsible for gas and particle exchanges as commonly adopted by all

operational models. Specically, how variation in horizontal leaf area density within

the vegetated medium, leaf size and leaf microroughness impact the aerodynamic attributes

and thereby the ultrane particle collection eciency at the leaf/branch scale

is explored using wind tunnel experiments with interpretations by a porous media

model and a scaling analysis. A multi-layered and size-resolved second-order closure

model combined with particle

uxes and concentration measurements within and

above a forest is used to explore the particle transport processes within the canopy

sub-layer and the partitioning of particle deposition onto canopy medium and forest

oor. For gases, a modeling framework accounting for the leaf-level boundary layer

eects on the stomatal pathway for gas exchange is proposed and combined with sap

ux measurements in a wind tunnel to assess how leaf-level transpiration varies with

increasing wind speed. How exogenous environmental conditions and endogenous

soil-root-stem-leaf hydraulic and eco-physiological properties impact the above- and

below-ground water dynamics in the soil-plant system and shape plant responses

to droughts is assessed by a porous media model that accommodates the transient

water

ow within the plant vascular system and is coupled with the aforementioned

leaf-level gas exchange model and soil-root interaction model. It should be noted

that tackling all aspects of potential issues causing uncertainties in forecasting the

feedback cycle between terrestrial ecosystem and the climate is unrealistic in a single

dissertation but further research questions and opportunities based on the foundation

derived from this dissertation are also brie

y discussed.