961 resultados para Gas exchange
Resumo:
Introduction: In the last years cardiac surgery for congenital heart disease (CHD) reduced dramatically mortality modifying prognosis, but, at the same time, increased morbidity in this patient population. Respiratory and cardiovascular systems are strictly anatomically and functionally connected, so that alterations of pulmonary hemodynamic conditions modify respiratory function. While very short-term alterations of respiratory mechanics after surgery were investigated by many authors, not as much works focused on long-term changes. In these subjects rest respiratory function may be limited by several factor: CHD itself (fetal pulmonary perfusion influences vascular and alveolar development), extracorporeal circulation (CEC), thoracotomy and/or sternotomy, rib and sternal contusions, pleural adhesions and pleural fibrosis, secondary to surgical injury. Moreover inflammatory cascade, triggered by CEC, can cause endothelial damage and compromise gas exchange. Aims: The project was conceived to 1) determine severity of respiratory functional impairement in different CHD undergone to surgical correction/palliation; 2) identify the most and the least CHD involved by pulmonary impairement; 3) find a correlation between a specific hemodynamic condition and functional anomaly, and 4) between rest respiratory function and cardiopulmonary exercise test. Materials and methods: We studied 113 subjects with CHD undergone to surgery, and distinguished by group in accord to pulmonary blood flow (group 0: 28 pts with normal pulmonary flow; group 1: 22 pts with increased flow; group 2: 43 pts with decreased flow; group 3: 20 pts with total cavo-pulmonary anastomosis-TCPC) followed by the Pediatric Cardiology and Cardiac Surgery Unit, and we compare them to 37 age- and sex-matched healthy subjects. In Pediatric Pulmonology Unit all pts performed respiratory function tests (static and dynamic volumes, flow/volume curve, airway resistances-raw- and conductance-gaw-, lung diffusion of CO-DLCO- and DLCO/alveolar volume), and CHD pts the same day had cardiopulmonary test. They all were examined and had allergological tests, and respiratory medical history. Results: restrictive pattern (measured on total lung capacity-TLC- and vital capacity-VC) was in all CHD groups, and up to 45% in group 2 and 3. Comparing all groups, we found a significant difference in TLC between healthy and group 2 (p=0.001) and 3 (p=0.004), and in VC between group 2 and healthy (p=0.001) and group 1(p=0.034). Inspiratory capacity (IC) was decreased in group 2 related to healthy (p<0.001) and group 1 (p=0.037). We showed a direct correlation between TLC and VC with age at surgery (p=0.01) and inverse with number of surgical interventions (p=0.03). Reduced FEV1/FVC ratio, Gaw and increased Raw were mostly present in group 3. DLCO was impaired in all groups, but up to 80% in group 3 and 50% in group 2; when corrected for alveolar volume (DLCO/VA) reduction persisted in group 3 (20%), 2 (6.2%) and 0 (7.1%). Exercise test was impaired in all groups: VO2max and VE markedly reduced in all but especially in group 3, and VE/VCO2 slope, marker of ventilatory response to exercise, is increased (<36) in 62.5% of group 3, where other pts had anyway value>32. Comparing group 3 and 2, the most involved categories, we found difference in VO2max and VE/VCO2 slope (respectively p=0.02 and p<0.0001). We evidenced correlation between rest and exercise tests, especially in group 0 (between VO2max and FVC, FEV1, VC, IC; inverse relation between VE/VCO2slope and FVC, FEV1 and VC), but also in group 1 (VO2max and IC), group 2 (VO2max and FVC and FEV1); never in group 3. Discussion: According with literature, we found a frequent impairment of rest pulmonary function in all groups, but especially in group 2 and 3. Restrictive pattern was the most frequent alteration probably due to compromised pulmonary (vascular and alveolar) development secondary to hypoperfusion in fetal and pre-surgery (and pre-TCPC)life. Parenchymal fibrosis, pleural adhesions and thoracic deformities can add further limitation, as showed by the correlation between group 3 and number of surgical intervention. Exercise tests were limited, particularly in group 3 (complex anatomy and lost of chronotropic response), and we found correlations between rest and exercise tests in all but group 3. We speculate that in this patients hemodynamic exceeds respiratory contribution, though markedly decreased.
Resumo:
The responses of photosynthetic plant gas exchange, COS uptake and carbonic anhydrase (CA) activity were studied on Quercus ilex (Holm oak), and beech Fagus sylvatica L
Resumo:
Ein neu entwickeltes globales Atmosphärenchemie- und Zirkulationsmodell (ECHAM5/MESSy1) wurde verwendet um die Chemie und den Transport von Ozonvorläufersubstanzen zu untersuchen, mit dem Schwerpunkt auf Nichtmethankohlenwasserstoffen. Zu diesem Zweck wurde das Modell durch den Vergleich der Ergebnisse mit Messungen verschiedenen Ursprungs umfangreich evaluiert. Die Analyse zeigt, daß das Modell die Verteilung von Ozon realistisch vorhersagt, und zwar sowohl die Menge als auch den Jahresgang. An der Tropopause gibt das Modell den Austausch zwischen Stratosphäre und Troposphäre ohne vorgeschriebene Flüsse oder Konzentrationen richtig wieder. Das Modell simuliert die Ozonvorläufersubstanzen mit verschiedener Qualität im Vergleich zu den Messungen. Obwohl die Alkane vom Modell gut wiedergeben werden, ergibt sich einige Abweichungen für die Alkene. Von den oxidierten Substanzen wird Formaldehyd (HCHO) richtig wiedergegeben, während die Korrelationen zwischen Beobachtungen und Modellergebnissen für Methanol (CH3OH) und Aceton (CH3COCH3) weitaus schlechter ausfallen. Um die Qualität des Modells im Bezug auf oxidierte Substanzen zu verbessern, wurden einige Sensitivitätsstudien durchgeführt. Diese Substanzen werden durch Emissionen/Deposition von/in den Ozean beeinflußt, und die Kenntnis über den Gasaustausch mit dem Ozean ist mit großen Unsicherheiten behaftet. Um die Ergebnisse des Modells ECHAM5/MESSy1 zu verbessern wurde das neue Submodell AIRSEA entwickelt und in die MESSy-Struktur integriert. Dieses Submodell berücksichtigt den Gasaustausch zwischen Ozean und Atmosphäre einschließlich der oxidierten Substanzen. AIRSEA, welches Informationen über die Flüssigphasenkonzentration des Gases im Oberflächenwasser des Ozeans benötigt wurde ausgiebig getestet. Die Anwendung des neuen Submodells verbessert geringfügig die Modellergebnisse für Aceton und Methanol, obwohl die Verwendung einer vorgeschriebenen Flüssigphasenkonzentration stark den Erfolg der Methode einschränkt, da Meßergebnisse nicht in ausreichendem Maße zu Verfügung stehen. Diese Arbeit vermittelt neue Einsichten über organische Substanzen. Sie stellt die Wichtigkeit der Kopplung zwischen Ozean und Atmosphäre für die Budgets vieler Gase heraus.
Resumo:
Background: Lymphangioleiomyomatosis (LAM), a rare progressive disease, is characterized by the proliferation of abnormal smooth muscle cells (LAM cells) in the lung, which leads to cystic parenchymal destruction and progressive respiratory failure. Estrogen receptors are present in LAM cells. LAM affects almost exclusively women of childbearing age. These findings, along with reports of disease progression during pregnancy or treatment with exogenous estrogens, have led to the assumption that hormonal factors play an important role in the pathogenesis of LAM. So, various therapies aim at preventing estrogen receptors (ER) by lowering circulating estrogen levels, by trying to block ER activity, or by attempting to lower ER expression in LAM. Prior experience have yielded conflicting results. Objective: The goal of this study was to evaluate, retrospectively, the effect of estrogen suppression in 21 patients with LAM. Design: We evaluated hormonal assays, pulmonary function tests and gas-exchange at baseline and after 12, 24 and 36 months after initiating hormonal manipulation. Results: The mean yearly rates of decline in FEV1 and DLCO are lower than those observed in prior studies and just DLCO decline was statistically significant. We also found an improvement of mean value of FVC and PaO2. Conclusions: Estrogen suppression appears to prevent decline in lung function in LAM.
Resumo:
The research was carried out to investigate of main elements of salt stress response in two strawberry cultivars, Elsanta and Elsinore. Plants were grown under 0, 10, 20 and 40 mM NaCl for 80 days. Salinity dramatically affected growth in both cultivars, although Elsinore appeared to be more impaired than Elsanta. Moreover a significant reduction of leaf photosynthesis, evaporation, and stomatal conductance was recorded 24 hrs after the stress was applied in both cultivars, whereas physiological functions were differentially restored after acclimation. However, cv. Elsanta had more efficient leaf gas exchange and water status than cv. Elsinore. In general, Fruit yield reduced upon salinization, wheares fruit quality concerning fruit taste, aroma, appearance, total soluble solids and titratable acidity, did not change but rather was enhanced under moderate salinity. On the other hand fruit quality was impaired at severe salt stress. Fruit antioxidant content and antioxidant capacity were enhanced significantly by increasing salt concentration in both cultivars. The oxidative effects of the stress were defined by the measures of some enzymatic activities and lipid peroxidation. Consistently, an increase in superoxide dismutase (SOD), catalase (CAT), peroxide dismutase (POD) enzymes and higher content of proline and soluble proteins were observed in cv. Elsinore than in cv. Elsanta. The increase coincided with a decrease in lipid peroxidation. The research confirmed that although strawberry cultivars were sensitive to salinity, difference between cultivars exist; The experiment revealed that cv. Elsanta could stand severe salt stress, which was lethal to cv. Elsinore. The parameters measured in the previous experiment were proposed as early screening tools for the salt stress response in nine strawberry genotypes. The results showed that, wheares Elsanta and Elsinore cultivars had a lower dry weight reduction at 40 mM NaCl among cultivars, Naiad, Kamila, and Camarosa were the least salt-sensitive cultivars among the screened.
Resumo:
The exchange of chemical constituents between ocean and atmosphere provides potentially important feedback mechanisms in the climate system. The aim of this study is to develop and evaluate a chemically coupled global atmosphere-ocean model. For this, an atmosphere-ocean general circulation model with atmospheric chemistry has been expanded to include oceanic biogeochemistry and the process of air-sea gas exchange. The calculation of seawater concentrations in the oceanic biogeochemistry submodel has been expanded from DMS, COâ‚‚
Resumo:
Recent findings are reported about certain aspects of the structure and function of the mammalian and avian lungs that include (a) the architecture of the air capillaries (ACs) and the blood capillaries (BCs); (b) the pulmonary blood capillary circulatory dynamics; (c) the adaptive molecular, cellular, biochemical, compositional, and developmental characteristics of the surfactant system; (d) the mechanisms of the translocation of fine and ultrafine particles across the airway epithelial barrier; and (e) the particle-cell interactions in the pulmonary airways. In the lung of the Muscovy duck Cairina moschata, at least, the ACs are rotund structures that are interconnected by narrow cylindrical sections, while the BCs comprise segments that are almost as long as they are wide. In contrast to the mammalian pulmonary BCs, which are highly compliant, those of birds practically behave like rigid tubes. Diving pressure has been a very powerful directional selection force that has influenced phenotypic changes in surfactant composition and function in lungs of marine mammals. After nanosized particulates are deposited on the respiratory tract of healthy human subjects, some reach organs such as the brain with potentially serious health implications. Finally, in the mammalian lung, dendritic cells of the pulmonary airways are powerful agents in engulfing deposited particles, and in birds, macrophages and erythrocytes are ardent phagocytizing cellular agents. The morphology of the lung that allows it to perform different functions-including gas exchange, ventilation of the lung by being compliant, defense, and secretion of important pharmacological factors-is reflected in its "compromise design."
Resumo:
Inhaled nitric oxide (iNO) improves gas exchange in about 60% of patients with acute respiratory distress syndrome (ARDS). Recruitment of atelectatic lung areas may improve responsiveness and preservation of spontaneous breathing (SB) may cause recruitment. Accordingly, preservation of SB may improve effectiveness of iNO. To test this hypothesis, iNO was evaluated in experimental acute lung injury (ALI) during SB. In 24 pigs with ALI, effects of 10 ppm iNO were evaluated during controlled mechanical ventilation (CMV) and SB in random order. Preservation of SB was provided by 4 different modes: Unassisted SB was enabled by biphasic positive airway pressure (BIPAP), moderate inspiratory assist was provided by pressure support (PS) and volume-assured pressure support (VAPS), maximum assist was ensured by assist control (A/C). Statistical analysis did not reveal gas exchange improvements due to SB alone. Significant gas exchange improvements due to iNO were only achieved during unassisted SB with BIPAP (P <.05) but not during CMV or assisted SB. The authors conclude that effectiveness of iNO may be improved by unassisted SB during BIPAP but not by assisted SB. Thus combined iNO and unassisted SB is possibly most effective to improve gas exchange in severe hypoxemic ARDS.
Resumo:
We studied development of the ostrich lung using light microscopy as well as electron microscopy techniques. At E24, the lung comprised a few epithelial tubes, interspersed with abundant mesenchyme with scattered profiles of incipient blood vessels. Between E24 and E39, the epithelial thickness was reduced by 90% from 13.5 ± 0.41 μm to 1.33 ± 0.014 μm (mean ± SD, respectively). Atria were evident at E32, and by E35, the first portions of the blood-gas barrier (BGB) measuring 3.41 ± 1.12 μm were encountered. Gas exchange tissue was well formed by E39 with atria, infundibulae, air capillaries and a mature blood-gas barrier (BGB). BGB formation proceeded through the complex processes of secarecytosis and peremerecytosis, which entailed decapitation of epithelial cells by cutting or pinching off respectively and by E39, the BGB was thin at 2.21 ± 1.21 μm. Vascular remodeling by intussusceptive angiogenesis was a late stage process mediated by intraluminal pillars in the pulmonary vasculature.
Resumo:
In an effort to understand the fate of inhaled submicron particles in the small sacs, or alveoli, comprising the gas-exchange region of the lung, we calculated the flow in three-dimensional (3D) rhythmically expanding models of alveolated ducts. Since convection toward the alveolar walls is a precursor to particle deposition, it was the goal of this paper to investigate the streamline maps' dependence upon alveoli location along the acinar tree. On the alveolar midplane, the recirculating flow pattern exhibited closed streamlines with a stagnation saddle point. Off the midplane we found no closed streamlines but nested, funnel-like, spiral, structures (reminiscent of Russian nesting dolls) that were directed towards the expanding walls in inspiration, and away from the contracting walls in expiration. These nested, funnel-like, structures were surrounded by air that flowed into the cavity from the central channel over inspiration and flowed from the cavity to the central channel over expiration. We also found that fluid particle tracks exhibited similar nested funnel-like spiral structures. We conclude that these unique alveolar flow structures may be of importance in enhancing deposition. In addition, due to inertia, the nested, funnel-like, structures change shape and position slightly during a breathing cycle, resulting in flow mixing. Also, each inspiration feeds a fresh supply of particle-laden air from the central channel to the region surrounding the mixing region. Thus, this combination of flow mixer and flow feeder makes each individual alveolus an effective mixing unit, which is likely to play an important role in determining the overall efficiency of convective mixing in the acinus.
Resumo:
Mechanical ventilation (MV) is life-saving but potentially harmful for lungs of premature infants. So far, animal models dealt with the acute impact of MV on immature lungs, but less with its delayed effects. We used a newborn rodent model including non-surgical and therefore reversible intubation with moderate ventilation and hypothesized that there might be distinct gene expression patterns after a ventilation-free recovery period compared to acute effects directly after MV. Newborn rat pups were subjected to 8 hr of MV with 60% oxygen (O(2)), 24 hr after injection of lipopolysaccharide (LPS), intended to create a low inflammatory background as often recognized in preterm infants. Animals were separated in controls (CTRL), LPS injection (LPS), or full intervention with LPS and MV with 60% O(2) (LPS + MV + O(2)). Lungs were recovered either directly following (T:0 hr) or 48 hr after MV (T:48 hr). Histologically, signs of ventilator-induced lung injury (VILI) were observed in LPS + MV + O(2) lungs at T:0 hr, while changes appeared similar to those known from patients with chronic lung disease (CLD) with fewer albeit larger gas exchange units, at T:48 hr. At T:0 hr, LPS + MV + O(2) increased gene expression of pro-inflammatory MIP-2. In parallel anti-inflammatory IL-1Ra gene expression was increased in LPS and LPS + MV + O(2) groups. At T:48 hr, pro- and anti-inflammatory genes had returned to their basal expression. MMP-2 gene expression was decreased in LPS and LPS + MV + O(2) groups at T:0 hr, but no longer at T:48 hr. MMP-9 gene expression levels were unchanged directly after MV. However, at T:48 hr, gene and protein expression increased in LPS + MV + O(2) group. In conclusion, this study demonstrates the feasibility of delayed outcome measurements after a ventilation-free period in newborn rats and may help to further understand the time-course of molecular changes following MV. The differences obtained from the two time points could be interpreted as an initial transitory increase of inflammation and a delayed impact of the intervention on structure-related genes.
Resumo:
The hepato-pulmonary syndrome (HPS) is characterized by a combination of liver disease and pulmonary gas exchange abnormalities with arterial hypoxemia, intrapulmonary vasodilatation and arteriovenous shunting in the absence of intrinsic cardiopulmonary disease. The course of the disease is typically progressive. The mortality rate correlates with the pulmonary shunt volume and the degree of hypoxemia at room air. While the patho-physiology of HPS is still not fully understood, a multifactorial etiology is favored. Apart from functional intrapulmonary arteriovenous shunts which appear to represent a major factor in the development of HPS, both ventilation-perfusion mismatch and limited oxygen diffusion contribute to the HPS. Regarding its clinical appearance, pulmonary and hepatic symptoms have to be distinguished. Contrast echocardiography is the primary diagnostic tool. Symptomatically, hypoxemia can be treated with oxygen. So far, the only successful treatment approach which has been tested in larger patient groups, is liver transplantation. Given this background, the aim of this review is to critically discuss current concepts of this serious complication of liver diseases.
Resumo:
BACKGROUND: The prolonged effect of electroporation-mediated human interleukin-10 (hIL-10) overexpression in skeletal muscle under the control of the constitutional polyubiquitin C promoter (pUb hIL-10) on rat lung allograft rejection was evaluated. METHODS: Left lung allotransplantation was performed from Brown-Norway to Fischer-F344 rats. Either 2.5 mug pCIK hIL-10 (hIL-10/cytomegalovirus early promoter enhancer) alone (Group I/sacrifice Day 5 and II/sacrifice Day 10) or in combination with 2.5 mug pUb hIL-10 (hIL-10/UbC promoter; Group III/sacrifice Day 10) were injected into the tibialis anterior muscle of the recipient, followed by electroporation 24 hours before transplantation. Animals in Control Groups IV and V without gene transfer were euthanized on Day 5 and 10, respectively. All animals received a daily non-therapeutic dose of cyclosporine A (2.5 mg/kg). RESULTS: In Control Group IV, complete rejection (median A3B3) was noted on Day 5 with a Pao(2) of 43 +/- 9 mm Hg. In recipients of Control Group V, measurement of gas exchange on Day 10 and rejection grading was impossible because of complete destruction of the allograft. Group I animals on Day 5 (233 +/- 123 mm Hg; p = 0.02 vs Group IV) and Group II animals on Day 10 (150 +/- 139 mm Hg; p = 0.15 vs Group IV) demonstrated improved graft function. Graft function in Group III was further improved on Day 10 (299 +/- 123 mm Hg; p = 0.002 vs Group IV; p = 0.05 vs Group II; p = 0.36 vs Group I). Rejection was significantly reduced in Group III (median, A2B2) compared with Group II (median, A4B3; p < 0.05). CONCLUSIONS: Interleukin-10 overexpression under control of the constitutive ubiquitin C promoter ameliorates acute rejection and preserves lung graft function for a prolonged time.
Resumo:
The human lung is born with a fraction of the adult complement of alveoli. The postnatal stages of human lung development comprise an alveolar stage, a stage of microvascular maturation, and very likely a stage of late alveolarization. The characteristic structural features of the alveolar stage are well known; they are very alike in human and rat lungs. The bases for alveolar formation are represented by immature inter-airspace walls with two capillary layers with a central sheet of connective tissue. Interalveolar septa are formed by folding up of one of the two capillary layers. In the alveolar stage, alveolar formation occurs rapidly and is typically very conspicuous in both species; it has therefore been termed 'bulk alveolarization'. During and after alveolarization the septa with double capillary networks are restructured to the mature form with a single network. This happens in the stage of microvascular maturation. After these steps the lung proceeds to a phase of growth during which capillary growth by intussusception plays an important role in supporting gas exchange. In view of reports that alveoli are added after the stage of microvascular maturation, the question arises whether the present concept of alveolar formation needs revision. On the basis of morphological and experimental findings we can state that mature lungs contain all the features needed for 'late alveolarization' by the classical septation process. Because of the high plasticity of the lung tissues, late alveolarization or some forms of compensatory alveolar formation may be considered for the human lung.
Resumo:
INTRODUCTION: The objective was to study the effects of a novel lung volume optimization procedure (LVOP) using high-frequency oscillatory ventilation (HFOV) upon gas exchange, the transpulmonary pressure (TPP), and hemodynamics in a porcine model of surfactant depletion. METHODS: With institutional review board approval, the hemodynamics, blood gas analysis, TPP, and pulmonary shunt fraction were obtained in six anesthetized pigs before and after saline lung lavage. Measurements were acquired during pressure-controlled ventilation (PCV) prior to and after lung damage, and during a LVOP with HFOV. The LVOP comprised a recruitment maneuver with a continuous distending pressure (CDP) of 45 mbar for 2.5 minutes, and a stepwise decrease of the CDP (5 mbar every 5 minute) from 45 to 20 mbar. The TPP level was identified during the decrease in CDP, which assured a change of the PaO2/FIO2 ratio < 25% compared with maximum lung recruitment at CDP of 45 mbar (CDP45). Data are presented as the median (25th-75th percentile); differences between measurements are determined by Friedman repeated-measures analysis on ranks and multiple comparisons (Tukey's test). The level of significance was set at P < 0.05. RESULTS: The PaO2/FiO2 ratio increased from 99.1 (56.2-128) Torr at PCV post-lavage to 621 (619.4-660.3) Torr at CDP45 (CDP45) (P < 0.031). The pulmonary shunt fraction decreased from 51.8% (49-55%) at PCV post-lavage to 1.03% (0.4-3%) at CDP45 (P < 0.05). The cardiac output and stroke volume decreased at CDP45 (P < 0.05) compared with PCV, whereas the heart rate, mean arterial pressure, and intrathoracic blood volume remained unchanged. A TPP of 25.5 (17-32) mbar was required to preserve a difference in PaO2/FIO2 ratio < 25% related to CDP45; this TPP was achieved at a CDP of 35 (25-40) mbar. CONCLUSION: This HFOV protocol is easy to perform, and allows a fast determination of an adequate TPP level that preserves oxygenation. Systemic hemodynamics, as a measure of safety, showed no relevant deterioration throughout the procedure.