987 resultados para GLASS BEAD TECHNOLOGY
Resumo:
The antecedents of channel power (e.g. El-Ansary and Stern, 1972) and the impact of channel structure ( e.g. Anderson and Narus,1984) on channel dynamics have long been important topics within the channel literature. In addition to the theoretical and methodological contributions, research in these areas has helped channel managers to understand how power is generated and used in coordinating distribution strategies in different contexts. The study presented in this paper builds upon these previous literatures, which are first briefly reviewed below.
Resumo:
This paper investigates virtual reality representations of performance in London’s late sixteenth-century Rose Theatre, a venue that, by means of current technology, can once again challenge perceptions of space, performance, and memory. The VR model of The Rose becomes a Camillo device in that it represents a virtual recreation of this venue in as much detail as possible and attempts to recover graphic demonstrations of the trace memories of the performance modes of the day. The VR model is based on accurate archeological and theatre historical records and is easy to navigate. The introduction of human figures onto The Rose’s stage via motion capture allows us to explore the relationships between space, actor and environment. The combination of venue and actors facilitates a new way of thinking about how the work of early modern playwrights can be stored and recalled. This virtual theatre is thus activated to intersect productively with contemporary studies in performance; as such, our paper provides a perspective on and embodiment of the relation between technology, memory and experience. It is, at its simplest, a useful archiving project for theatrical history, but it is directly relevant to contemporary performance practice as well. Further, it reflects upon how technology and ‘re-enactments’ of sorts mediate the way in which knowledge and experience are transferred, and even what may be considered ‘knowledge.’ Our work provides opportunities to begin addressing what such intermedial confrontations might produce for ‘remembering, experiencing, thinking and imagining.’ We contend that these confrontations will enhance live theatre performance rather than impeding or disrupting contemporary performance practice. This paper intersects with the CFP’s ‘Performing Memory’ and ‘Memory Lab’ themes. Our presentation (which includes a demonstration of the VR model and the motion capture it requires) takes the form of two closely linked papers that share a single abstract. The two papers will be given by two people, one of whom will be physically present in Utrecht, the other participating via Skype.
Resumo:
This talk explores a new opportunity renewable energy technology has for society.
Resumo:
This case study analyzes a firm's technology strategy for its fit or match with the requirements of the industry environment in which it operates. Understanding the relationships between market characteristics and technology strategies can assist managers in making complex and difficult decisions regarding their use of technology to improve competitive performance. Using the technology strategy framework, managers can map their own capabilities for comparison with the more appropriate or superior approach to technology in that industry environment. Alternatively, firms seeking to transition from one industry niche or environment to another could identify and move to acquire the required capabilities. The dynamics of industry competition, both domestic and international, emphasize the need for improved management of the strategic fit between technical capabilities and industry environment.
Resumo:
This paper explores the embodiment of agency concepts in tangible user interfaces to create meaningful learning experiences. Current notions of agent-based tangible technology are extended, through the development of low-fidelity prototypes, to include additional flexibility and adaptability. A study involving these prototypes was conducted in a kindergarten environment with nine four-year-old children. Observations of children's interactions with the prototypes produced insightful results which will be used to further refine the product under development.
Resumo:
The project is working towards building an understanding of the personal interests and experiences of children with the aim of designing appropriate, usable and, most importantly, inspirational educational technology. kidprobe, an adaptation of the technology probe concept, has been used as a lightweight method of gaining contextual information about children's interactions with 'fun' technology. kidprobe has produced design inspiration which focuses primarily on the social and emotional connections children made. The use of kidprobe has generated some important ideas for improving the use of probes with children. It is an important first step in understanding how to effectively adapt probing techniques to inspire the design of technology for children.
Resumo:
Electronic Blocks are a new programming environment, designed specifically for children aged between three and eight years. As such, the design of the Electronic Block environment is firmly based on principles of developmentally appropriate practices in early childhood education. The Electronic Blocks are physical, stackable blocks that include sensor blocks, action blocks and logic blocks. Evaluation of the Electronic Blocks with both preschool and primary school children shows that the blocks' ease of use and power of engagement have created a compelling tool for the introduction of meaningful technology education in an early childhood setting. The key to the effectiveness of the Electronic Blocks lies in an adherence to theories of development and learning throughout the Electronic Blocks design process.
Resumo:
Mesoporous bioactive glass (MBG) is a new class of biomaterials with a well-ordered nanochannel structure, whose in vitro bioactivity is far superior than that of non-mesoporous bioactive glass (BG); the material's in vivo osteogenic properties are, however, yet to be assessed. Porous silk scaffolds have been used for bone tissue engineering, but this material's osteoconductivity is far from optimal. The aims of this study were to incorporate MBG into silk scaffolds in order to improve their osteoconductivity and then to compare the effect of MBG and BG on the in vivo osteogenesis of silk scaffolds. MBG/silk and BG/silk scaffolds with a highly porous structure were prepared by a freeze-drying method. The mechanical strength, in vitro apatite mineralization, silicon ion release and pH stability of the composite scaffolds were assessed. The scaffolds were implanted into calvarial defects in SCID mice and the degree of in vivo osteogenesis was evaluated by microcomputed tomography (μCT), hematoxylin and eosin (H&E) and immunohistochemistry (type I collagen) analyses. The results showed that MBG/silk scaffolds have better physiochemical properties (mechanical strength, in vitro apatite mineralization, Si ion release and pH stability) compared to BG/silk scaffolds. MBG and BG both improved the in vivo osteogenesis of silk scaffolds. μCT and H&E analyses showed that MBG/silk scaffolds induced a slightly higher rate of new bone formation in the defects than did BG/silk scaffolds and immunohistochemical analysis showed greater synthesis of type I collagen in MBG/silk scaffolds compared to BG/silk scaffolds.
Resumo:
For a biomaterial to be considered suitable for bone repair it should ideally be both bioactive and have a capacity for controllable drug delivery; as such, mesoporous SiO2 glass has been proposed as a new class of bone regeneration material by virtue of its high drug-loading ability and generally good biocompatibility. It does, however, have less than optimum bioactivity and controllable drug delivery properties. In this study, we incorporated strontium (Sr) into mesoporous SiO2 in an effort to develop a bioactive mesoporous SrO–SiO2 (Sr–Si) glass with the capacity to deliver Sr2+ ions, as well as a drug, at a controlled rate, thereby producing a material better suited for bone repair. The effects of Sr2+ on the structure, physiochemistry, drug delivery and biological properties of mesoporous Sr–Si glass were investigated. The prepared mesoporous Sr–Si glass was found to have an excellent release profile of bioactive Sr2+ ions and dexamethasone, and the incorporation of Sr2+ improved structural properties, such as mesopore size, pore volume and specific surface area, as well as rate of dissolution and protein adsorption. The mesoporous Sr–Si glass had no cytotoxic effects and its release of Sr2+ and SiO44− ions enhanced alkaline phosphatase activity – a marker of osteogenic cell differentiation – in human bone mesenchymal stem cells. Mesoporous Sr–Si glasses can be prepared to porous scaffolds which show a more sustained drug release. This study suggests that incorporating Sr2+ into mesoporous SiO2 glass produces a material with a more optimal drug delivery profile coupled with improved bioactivity, making it an excellent material for bone repair applications. Keywords: Mesoporous Sr–Si glass; Drug delivery; Bioactivity; Bone repair; Scaffolds
Resumo:
New-generation biomaterials for bone regenerations should be highly bioactive, resorbable and mechanically strong. Mesoporous bioactive glass (MBG), as a novel bioactive material, has been used for the study of bone regeneration due to its excellent bioactivity, degradation and drug-delivery ability; however, how to construct a 3D MBG scaffold (including other bioactive inorganic scaffolds) for bone regeneration still maintains a significant challenge due to its/their inherit brittleness and low strength. In this brief communication, we reported a new facile method to prepare hierarchical and multifunctional MBG scaffolds with controllable pore architecture, excellent mechanical strength and mineralization ability for bone regeneration application by a modified 3D-printing technique using polyvinylalcohol (PVA), as a binder. The method provides a new way to solve the commonly existing issues for inorganic scaffold materials, for example, uncontrollable pore architecture, low strength, high brittleness and the requirement for the second sintering at high temperature. The obtained 3D-printing MBG scaffolds possess a high mechanical strength which is about 200 times for that of traditional polyurethane foam template-resulted MBG scaffolds. They have highly controllable pore architecture, excellent apatite-mineralization ability and sustained drug-delivery property. Our study indicates that the 3D-printed MBG scaffolds may be an excellent candidate for bone regeneration.
Resumo:
About 1.6 million students currently study outside their home country. Despite this, and the fact that Australia, the United States, the United Kingdom and many of the other host countries of international students are themselves extremely culturally diverse communities, business education remains essentially mono-cultural in form and Anglo American in content. Whilst it is true that these international students may want to understand the "Western" way of doing things, they may not be familiar or comfortable with the processes used to facilitate learning. This paper explores a project undertaken to create a tool that provides essential pre-orientation information and advice to students before they leave home. Where cultural adjustment is required, catching students before departure is a very effective time to introduce key information about lifestyle, culture and approaches to teaching and learning that would assist students with the complex and difficult adjustment to studying abroad, so that they could make a smoother transition to their new place of learning. Welcome to Studying Business at QUT is a Data DVD with 19 short videos capturing a student perspective on life and study. Forty percent of the content is related to living and studying and includes sections on accommodation, lifestyle, food and transport etc., and 60% takes an in-depth look at studying business, featuring students and academics talking about issues such as assessment, academic writing and working in groups. This paper outlines the process of developing the DVD and the range of issues addressed.
Resumo:
Doctoral dissertation, Stanford University, California, 1993
Resumo:
National and international competition demands that Australian organisations become more competent at making the strategic technological decisions that impact their future in the international business economy. A new subject unit, Management of Technology is now offered in the popular Master of Project Management and Master of Business Administration programs at the Queensland University of Technology. This cross-disciplinary subject provides students with a theoretical foundation and practical tools to improve the efficiency and competitiveness of technically-oriented organisations. Applied case studies—shown to be the most appropriate mode of learning for mature-age students—form an integral component of the teaching program. In the first offerings of this subject during 1995 and 1996, American case studies were used. QUT has now supported the development of Australian case study packages for technology management through its Teaching and Learning Grants Scheme. The first case developed—Inland Oil Refiners’ Microstill Project—was completed in early 1996. A newly developed case—Automated Door Opening System for Wheelchair Access—is currently being completed. This case (comprising case study documentation and video presentation) tracks a cross-disciplinary product development driven by legislative and community pressures. It also reinforces the importance of personal relationships in the technology and business development that has taken this young Brisbane-based company from its embryonic beginnings on the Queensland Cultural Centre in 1994 to a national and export-focussed organisation in 1997. This paper reviews the need to develop Australian case material in Management of Technology, discusses the case study documentation and supporting video developed, and application of the case study approach in this teaching initiative in QUT’s Master of Project Management and Master of Business Administration programs.
Resumo:
Earlier research developed theoretically-based aggregate metrics for technology strategy and used them to analyze California bridge construction firms (Hampson, 1993). Determinants of firm performance, including trend in contract awards, market share and contract awards per employee, were used as indicators for competitive performance. The results of this research were a series of refined theoretically-based measures for technology strategy and a demonstrated positive relationship between technology strategy and competitive performance within the bridge construction sector. This research showed that three technology strategy dimensions—competitive positioning, depth of technology strategy, and organizational fit— show very strong correlation with the competitive performance indicators of absolute growth in contract awards, and contract awards per employee. Both researchers and industry professionals need improved understanding of how technology affects results, and how to better target investments to improve competitive performance in particular industry sectors. This paper builds on the previous research findings by evaluating the strategic fit of firms' approach to technology with industry segment characteristics. It begins with a brief overview of the background regarding technology strategy. The major sections of the paper describe niches and firms in an example infrastructure construction market, analyze appropriate technology strategies, and describe managerial actions to implement these strategies and support the business objectives of the firm.