997 resultados para GALAXIES: FUNDAMENTAL PARAMETERS
Resumo:
We describe a sample of 13 bright (18.5 < B-J < 20.1), compact galaxies at low redshift (0.05 < z < 0.21) behind the Fornax Cluster. These galaxies are unresolved on UK Schmidt sky survey plates, and so they would be missing from most galaxy catalogs compiled from this material. The objects were found during initial observations of The Fornax Spectroscopic Survey. This project is using the Two-degree Field spectrograph on the Anglo-Australian Telescope to obtain spectra for a complete sample of all 14,000 objects, stellar and nonstellar, with 16.5 < B-J < 19.7, in a 12 deg(2) area centered on the Fornax Cluster of galaxies. The surface density of compact galaxies with magnitudes 16.5 < B-J < 19.7 is 7 +/- 3 deg(-2), representing 2.8% +/- 1.6% of all local (z < 0.2) galaxies to this limit. There are 12 +/- 3 deg(-2) with 16.5 < B-J < 20.2. They are luminous (-21.5 < M-B < -18.0, for H-o = 50 km s(-1) Mpc(-1)), and most have strong emission lines (H alpha equivalent widths of 40-200 Angstrom) and small sizes typical of luminous H II galaxies and compact narrow emission line galaxies. Four out of 13 have red colors and early-type spectra, and so they are unlikely to have been detected in any previous surveys.
Resumo:
Modulational instability in optical Bragg gratings with a quadratic nonlinearity is studied. The electric field in such structures consists of forward and backward propagating components at the fundamental frequency and its second harmonic. Analytic continuous wave (CW) solutions are obtained, and the intricate complexity of their stability, due to the large number of equations and number of free parameters, is revealed. The stability boundaries are rich in structures and often cannot be described by a simple relationship. In most cases, the CW solutions are unstable. However, stable regions are found in the nonlinear Schrodinger equation limit, and also when the grating strength for the second harmonic is stronger than that of the first harmonic. Stable CW solutions usually require a low intensity. The analysis is confirmed by directly simulating the governing equations. The stable regions found have possible applications in second-harmonic generation and dark solitons, while the unstable regions maybe useful in the generation of ultrafast pulse trains at relatively low intensities. [S1063-651X(99)03005-6].
Resumo:
We consider two different kinds of fluctuations in an ion trap potential: external fluctuating electrical fields, which cause statistical movement (wobbling) of the ion relative to the center of the trap, and fluctuations of the spring constant, which an due to fluctuations of the ac component of the potential applied in the Paul trap for ions. We write down master equations for both cases and, averaging out the noise, obtain expressions for the heating of the ion. We compare our results to previous results for far-off resonance optical traps and heating in ion traps. The effect of fluctuating external electrical fields for a quantum gate operation (controlled-NOT) is determined and the fidelity for that operation derived. [S1050-2947(99)06005-9].
Resumo:
CXTANNEAL is a program for analysing contaminant transport in soils. The code, written in Fortran 77, is a modified version of CXTFIT, a commonly used package for estimating solute transport parameters in soils. The improvement of the present code is that it includes simulated annealing as the optimization technique for curve fitting. Tests with hypothetical data show that CXTANNEAL performs better than the original code in searching for optimal parameter estimates. To reduce the computational time, a parallel version of CXTANNEAL (CXTANNEAL_P) was also developed. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
The Fornax Spectroscopic Survey will use the Two degree Field spectrograph (2dF) of the Angle-Australian Telescope to obtain spectra for a complete sample of all 14000 objects with 16.5 less than or equal to b(j) less than or equal to 19.7 in a 12 square degree area centred on the Fornax Cluster. The aims of this project include the study of dwarf galaxies in the cluster (both known low surface brightness objects and putative normal surface brightness dwarfs) and a comparison sample of background field galaxies. We will also measure quasars and other active galaxies, any previously unrecognised compact galaxies and a large sample of Galactic stars. By selecting all objects-both stars and galaxies-independent of morphology, we cover a much larger range of surface brightness and scale size than previous surveys. In this paper we first describe the design of the survey. Our targets are selected from UK Schmidt Telescope sky survey plates digitised by the Automated Plate Measuring (APM) facility. We then describe the photometric and astrometric calibration of these data and show that the APM astrometry is accurate enough for use with the 2dF. We also describe a general approach to object identification using cross-correlations which allows us to identify and classify both stellar and galaxy spectra. We present results from the first 2dF field. Redshift distributions and velocity structures are shown for all observed objects in the direction of Fornax, including Galactic stars? galaxies in and around the Fornax Cluster, and for the background galaxy population. The velocity data for the stars show the contributions from the different Galactic components, plus a small tail to high velocities. We find no galaxies in the foreground to the cluster in our 2dF field. The Fornax Cluster is clearly defined kinematically. The mean velocity from the 26 cluster members having reliable redshifts is 1560 +/- 80 km s(-1). They show a velocity dispersion of 380 +/- 50 km s(-1). Large-scale structure can be traced behind the cluster to a redshift beyond z = 0.3. Background compact galaxies and low surface brightness galaxies are found to follow the general galaxy distribution.
Resumo:
The removal of chemicals in solution by overland how from agricultural land has the potential to be a significant source of chemical loss where chemicals are applied to the soil surface, as in zero tillage and surface-mulched farming systems. Currently, we lack detailed understanding of the transfer mechanism between the soil solution and overland flow, particularly under field conditions. A model of solute transfer from soil solution to overland flow was developed. The model is based on the hypothesis that a solute is initially distributed uniformly throughout the soil pore space in a thin layer at the soil surface. A fundamental assumption of the model is that at the time runoff commences, any solute at the soil surface that could be transported into the soil with the infiltrating water will already have been convected away from the area of potential exchange. Solute remaining at the soil surface is therefore not subject to further infiltration and may be approximated as a layer of tracer on a plane impermeable surface. The model fitted experimental data very well in all but one trial. The model in its present form focuses on the exchange of solute between the soil solution and surface water after the commencement of runoff. Future model development requires the relationship between the mass transfer parameters of the model and the time to runoff: to be defined. This would enable the model to be used for extrapolation beyond the specific experimental results of this study. The close agreement between experimental results and model simulations shows that the simple transfer equation proposed in this study has promise for estimating solute loss to surface runoff. Copyright (C) 2000 John Wiley & Sons, Ltd.
Resumo:
We describe a population of compact objects in the centre of the Fornax Cluster which were discovered as part of our 2dF Fornax Spectroscopic Survey. These objects have spectra typical of old stellar systems, but are unresolved on photographic sky survey plates. They have absolute magnitudes - 13 < M-B
Resumo:
Recent spectroscopic and morphological observational studies of galaxies around NGC 1399 in the Fornax Cluster have discovered several ultracompact dwarf galaxies with intrinsic sizes of similar to 100 pc and absolute B-band magnitudes ranging from -13 to -11 mag. In order to elucidate the origin of these enigmatic objects, we perform numerical simulations on the dynamical evolution of nucleated dwarf galaxies orbiting NGC 1399 and suffering from its strong tidal gravitational field. Adopting a plausible scaling relation for dwarf galaxies, we find that the outer stellar components of a nucleated dwarf are totally removed. This is due to them being tidally stripped over the course of several passages past the central region of NGC 1399. The nucleus, however, manages to survive. We also find that the size and luminosity of the remnant are similar to those observed for ultracompact dwarf galaxies, if the simulated precursor nucleated dwarf has a mass of similar to 10(8) M.. These results suggest that ultracompact dwarf galaxies could have previously been more luminous dwarf spheroidal or elliptical galaxies with rather compact nuclei.
Resumo:
We present the results of a spectroscopic survey of 675 bright (16.5 < b(J) < 18) galaxies in a 6 degrees field centred on the Fornax cluster with the FLAIR-II spectrograph on the UK Schmidt Telescope. Three galaxy samples were observed: compact galaxies to search for new blue compact dwarfs, candidate M 32-like compact dwarf ellipticals, and a subset of the brightest known cluster members in order to study the cluster dynamics. We measured redshifts for 516 galaxies, of which 108 were members of the Fornax Cluster. Defining dwarf galaxies to be those with b(J) greater than or equal to 15 (M-B greater than or equal to - 16.5), there are a total of 62 dwarf cluster galaxies in our sample. Nine of these are new cluster members previously misidentified as background galaxies. The cluster dynamics show that the dwarf galaxies are still falling into the cluster whereas the giants are virialized. We classified the observed galaxies as late-type if we detected H alpha emission at an equivalent width greater than 1 Angstrom. The spectra were obtained through fixed apertures, so they reflect activity in the galaxy cores, but this does not significantly bias the classifications of the compact dwarfs in our sample. The new classifications reveal a higher rate of star formation among the dwarf galaxies than suggested by morphological classification: 35 per cent have significant H alpha emission indicative of star formations but only 19 per cent were morphologically classified as late-types. The star-forming dwarf galaxies span the full range of physical sizes and we find no evidence in our data for a distinct class of star-forming blue compact dwarf (BCD) galaxy. The distribution of scale sizes is consistent with evolutionary processes which transform late-type dwarfs to early-type dwarfs. The fraction of dwarfs with active star formation drops rapidly towards the cluster centre: this is the usual density-morphology relation confirmed here for dwarf galaxies. The star-forming dwarfs are concentrated in the outer regions of the cluster, the most extreme in an infalling subcluster. We estimate gas depletion time-scales for five dwarfs with detected Hi emission: these are long (of order 10(10) yr), indicating that an active gas removal process must be involved if they are transformed into gas-poor dwarfs as they fall further into the cluster. Finally, in agreement with our previous results, we find no compact dwarf elliptical (M 32-like) galaxies in the Fornax Cluster.
Resumo:
The first deep catalog of the H I Parkes All Sky Survey (HIPASS) is presented, covering the south celestial cap (SCC) region. The SCC area is similar to2400 deg(2) and covers delta < -62&DEG;. The average rms noise for the survey is 13 mJy beam(-1). Five hundred thirty-six galaxies have been cataloged according to their neutral hydrogen content, including 114 galaxies that have no previous cataloged optical counterpart. This is the largest sample of galaxies from a blind H I survey to date. Most galaxies in optically unobscured regions of sky have a visible optical counterpart; however, there is a small population of low-velocity H I clouds without visible optical counterparts whose origins and significance are unclear. The rms accuracy of the HIPASS positions is found to be 1.'9. The H I mass range of galaxies detected is from &SIM;10(6) to &SIM;10(11) M-.. There are a large number of late-type spiral galaxies in the SCC sample (66%), compared with 30% for optically selected galaxies from the same region in the NASA Extragalactic Database. The average ratio of H I mass to B luminosity of the sample increases according to optical type, from 1.8 M-./L-. for early types to 3.2 M-./L-. for late-type galaxies. The H I-detected galaxies tend to follow the large-scale structure traced by galaxies found in optical surveys. From the number of galaxies detected in this region of sky, we predict the full HIPASS catalog will contain &SIM;5000 galaxies, to a peak flux density limit of &SIM;39 mJy (3 σ), although this may be a conservative estimate as two large voids are present in the region. The H I mass function for this catalog is presented in a subsequent paper.
Resumo:
The H I Parkes All-Sky Survey (HIPASS) is a blind 21 cm survey for extragalactic neutral hydrogen, covering the whole southern sky. The HIPASS Bright Galaxy Catalog (BGC) is a subset of HIPASS and contains the 1000 H I brightest (peak flux density) galaxies. Here we present the 138 HIPASS BGC galaxies that had no redshift measured prior to the Parkes multibeam H I surveys. Of the 138 galaxies, 87 are newly cataloged. Newly cataloged is defined as having no optical ( or infrared) counterpart in the NASA/IPAC Extragalactic Database. Using the Digitized Sky Survey, we identify optical counterparts for almost half of the newly cataloged galaxies, which are typically of irregular or Magellanic morphological type. Several H I sources appear to be associated with compact groups or pairs of galaxies rather than an individual galaxy. The majority ( 57) of the newly cataloged galaxies lie within 10degrees of the Galactic plane and are missing from optical surveys as a result of confusion with stars or dust extinction. This sample also includes newly cataloged galaxies first discovered by Henning et al. in the H I shallow survey of the zone of avoidance. The other 30 newly cataloged galaxies escaped detection because of their low surface brightness or optical compactness. Only one of these, HIPASS J0546-68, has no obvious optical counterpart, as it is obscured by the Large Magellanic Cloud. We find that the newly cataloged galaxies with -b->10degrees are generally lower in H I mass and narrower in velocity width compared with the total HIPASS BGC. In contrast, newly cataloged galaxies behind the Milky Way are found to be statistically similar to the entire HIPASS BGC. In addition to these galaxies, the HIPASS BGC contains four previously unknown H I clouds.
Ultra-compact dwarf galaxies: a new class of compact stellar system discovered in the Fornax Cluster
Resumo:
We have used the 2dF spectrograph on the Anglo-Australian Telescope to obtain a complete spectroscopic sample of all objects in the magnitude range, 16.5 < bj < 19.8, regardless of morphology, in an area centred on the Fornax Cluster of galaxies. Among the unresolved targets are five objects which are members of the Fornax Cluster. They are extremely compact stellar systems with scale lengths less than 40 parsecs. These ultra-compact dwarfs are unlike any known type of stellar system, being more compact and significantly less luminous than other compact dwarf galaxies, yet much brighter than any globular cluster.
Resumo:
We assessed the responses of hematological parameters and their relationship to the anaerobic threshold of Brazilian soccer players during a training program. Twelve athletes were evaluated at the beginning (week 0, T1), in the middle (week 6, T2), and at the end (week 12, T3) of the soccer training program. On the first day at 7:30 AM, before collecting the blood sample at rest for the determination of the hematological parameters, the athletes were conducted to the anthropometric evaluation. On the second day at 8:30 AM, the athletes had their anaerobic threshold measured. Analysis of variance with Newman-Keuls`post hoc was used for statistical comparisons between the parameters measured during the soccer training program. Correlations between the parameters analyzed were determined using the Pearson`s correlation coefficient. Erythrocytes concentration, hemoglobin, and hematocrit were significantly increased from T1 to T2. The specific soccer training program led to a rise in erythrocytes, hemoglobin, and hematocrit from T1 to T2. We assumed that these results occurred due to the plasma volume reduction and may be explained by the soccer training program characteristics. Furthermore, we did not observe any correlation between the anaerobic threshold and the hematological parameters.
Resumo:
Purpose: To study the oculometric parameters of hyperopia in children with esotropic amblyopia, comparing amblyopic eyes with fellow eyes. Methods: Thirty-seven patients (5-8 years old) with bilateral hyperopia and esotropic amblyopia underwent a comprehensive ophthalmic examination, including cycloplegic refraction, keratometry and A-scan ultrasonography. Anterior chamber depth, lens thickness, vitreous chamber depth and total axial length were recorded. The refractive power of the crystalline lens was calculated using Bennett`s equations. Paired Student`s t-tests were used to compare ocular biometric measurements between amblyopic eyes and their fellow eyes. The associations of biometric parameters with refractive errors were assessed using Pearson correlation coefficients and linear regression. Multivariable models including axial length, corneal power and lens power were also constructed. Results: Amblyopic eyes were found to have significantly more hyperopic refraction, less corneal power, greater lens power, shorter vitreous chamber depth and shorter axial length, despite similar anterior chamber depth and lens thickness. The strongest correlation with refractive error was observed for the axial length/corneal radius ratio (r(36) = -0.92, p < 0.001 for amblyopic and r(36) = 0.87, p < 0.001 for fellow eyes). Axial length accounted for 39.2% (R(2)) of the refractive error variance in amblyopic eyes and 35.5% in fellow eyes. Adding corneal power to the model increased R(2) to 85.7% and 79.6%, respectively. A statistically significant correlation was found between axial length and corneal power, indicating decreasing corneal power with increasing axial length, and they were similar for amblyopic eyes (r(36) = 0.53,p < 0.001) and fellow eyes (r(36) = -0.57, p < 0.001). A statistically significant correlation was also found between axial length and lens power, indicating decreasing lens power with increasing axial length (r(36) = -0.72, p < 0.001 for amblyopic eyes and r(36) = -0.69, p < 0.001 for fellow eyes). Conclusions: We observed that the correlation among the major oculometric parameters and their individual contribution to hyperopia in esotropic children were similar in amblyopic and non-amblyopic eyes. This finding suggests that the counterbalancing effect of greater corneal and lens power associated with shorter axial length is similar in both eyes of patients with esotropic amblyopia.