885 resultados para Fuzzy Modelling, Short Circuit, GMAW-P, Welding, Gas Metal Arc Welding
Resumo:
Accurate prediction of shellside pressure drop in a baffled shell-and-tube heat exchanger is very difficult because of the complicated shellside geometry. Ideally, all the shellside fluid should be alternately deflected across the tube bundle as it traverses from inlet to outlet. In practice, up to 60% of the shellside fluid may bypass the tube bundle or leak through the baffles. This short-circuiting of the main flow reduces the efficiency of the exchanger. Of the various shellside methods, it is shown that only the multi-stream methods, which attempt to obtain the shellside flow distribution, predict the pressure drop with any degree of accuracy, the various predictions ranging from -30% to +70%, generally overpredicting. It is shown that the inaccuracies are mainly due to the manner in which baffle leakage is modelled. The present multi-stream methods do not allow for interactions of the various flowstreams, and yet it is shown that three main effects are identified, a) there is a strong interaction between the main cross flow and the baffle leakage streams, enhancing the crossflow pressure drop, b) there is a further short-circuit not considered previously i.e. leakage in the window, and c) the crossflow does not penetrate as far, on average, as previously supposed. Models are developed for each of these three effects, along with a new windowflow pressure drop model, and it is shown that the effect of baffle leakage in the window is the most significant. These models developed to allow for various interactions, lead to an improved multi-stream method, named the "STREAM-INTERACTION" method. The overall method is shown to be consistently more accurate than previous methods, with virtually all the available shellside data being predicted to within ±30% and over 60% being within ±20%. The method is, thus, strongly recommended for use as a design method.
Resumo:
An investigation of rat jejunal and distal colonic electrolyte transport in-vitro was undertaken using an Ussing chamber prepartion. Selective α2-adrenoceptor stimualtion in the jejunum was found to depress theo-phylline elevated anion secretion, as evidenced by decreases in short- circuit current (SCC). or α1 -Adrenoceptor stimulation, after α2 -adrenoceptor antagonism in the jejunum, evoked transient increases in basal anion secretion, as reflected by transient increases in basal SCC. The use of the neurotoxin tetrodotoxin indicated that this was a direct epithelial secretory effect. 5-hydroxytryptamine (5-HT) on the jejunum elicited transient increases in basal anion secretion, as demonstrated by transient increases in basal SCC. The use of tetrodotoxin, reserpine and α1 -adrenoceptor antagonists, indicated that a major component of this epithelial secretory effect by 5-HT, was associated with activation of intramural nervous pathways of the sympathetic nervous system, ultimately stimulating α1-adrenoceptors. This might represent an important secretory mechanism by 5-HT in the jejunum. β2-Adrenoceptor stimulation in the distal colon was found to decrease basal SCC, as evidenced by the metoprolol resistant effect of the selective β2- adrenoceptor agonist salbutamol, and lack of effect of the selective β1-adrenoceptor agonist prenalterol. An investigation of rat distal colonic fluid and electrolyte transport in-vivo was undertaken using an colonic loop technique. Although a basal colonic absorption of Na+ and Cl-, and a secretion of K+ were observed, these processes were not under tonic α-adrenergic regulation, as evidenced by the lack of effect of selective α-adrenoceptor antagonism. The secretory effects of prostaglandin-E2 were inhibited by α-adrenoceptor activation, whereas such stimulation did not evoke pro-absorptive responses upon basal transport, unlike noradrenaline.
Resumo:
This paper proposes a methodological scheme for the photovoltaic (PV) simulator design. With the advantages of a digital controller system, linear interpolation is proposed for precise fitting with higher computational efficiency. A novel control strategy that directly tackles two different duty cycles is proposed and implemented to achieve a full-range operation including short circuit (SC) and open circuit (OC) conditions. Systematic design procedures for both hardware and algorithm are explained, and a prototype is built. Experimental results confirm an accurate steady state performance under different load conditions, including SC and OC. This low power apparatus can be adopted for PV education and research with a limited budget.
Resumo:
The utilization of solar energy by photovoltaic (PV) systems have received much research and development (R&D) attention across the globe. In the past decades, a large number of PV array have been installed. Since the installed PV arrays often operate in harsh environments, non-uniform aging can occur and impact adversely on the performance of PV systems, especially in the middle and late periods of their service life. Due to the high cost of replacing aged PV modules by new modules, it is appealing to improve energy efficiency of aged PV systems. For this purpose, this paper presents a PV module reconfiguration strategy to achieve the maximum power generation from non-uniformly aged PV arrays without significant investment. The proposed reconfiguration strategy is based on the cell-unit structure of PV modules, the operating voltage limit of gird-connected converter, and the resulted bucket-effect of the maximum short circuit current. The objectives are to analyze all the potential reorganization options of the PV modules, find the maximum power point and express it in a proposition. This proposition is further developed into a novel implementable algorithm to calculate the maximum power generation and the corresponding reconfiguration of the PV modules. The immediate benefits from this reconfiguration are the increased total power output and maximum power point voltage information for global maximum power point tracking (MPPT). A PV array simulation model is used to illustrate the proposed method under three different cases. Furthermore, an experimental rig is built to verify the effectiveness of the proposed method. The proposed method will open an effective approach for condition-based maintenance of emerging aging PV arrays.
Resumo:
Power converters are a key, but vulnerable component in switched reluctance motor (SRM) drives. In this paper, a new fault diagnosis scheme for SRM converters is proposed based on the wavelet packet decomposition (WPD) with a dc-link current sensor. Open- and short-circuit faults of the power switches in an asymmetrical half-bridge converter are analyzed in details. In order to obtain the fault signature from the phase currents, two pulse-width modulation signals with phase shift are injected into the lower-switches of the converter to extract the excitation current, and the WPD algorithm is then applied to the detected currents for fault diagnosis. Moreover, a discrete degree of the wavelet packet node energy is chosen as the fault coefficient. The converter faults can be diagnosed and located directly by determining the changes in the discrete degree from the detected currents. The proposed scheme requires only one current sensor in the dc link, while conventional methods need one sensor for each phase or additional detection circuits. The experimental results on a 750-W three-phase SRM are presented to confirm the effectiveness of the proposed fault diagnosis scheme.
Resumo:
Switched reluctance motor (SRM) drives are one competitive technology for traction motor drives. This paper proposes a novel and flexible SRM fault-tolerant topology with fault diagnosis, fault tolerance, and advanced control functions. The converter is composed of a single-phase bridge and a relay network, based on the traditional asymmetrical half-bridge driving topology. When the SRM-driving system is subjected to fault conditions including open-circuit and short-circuit faults, the proposed converter starts its fault-diagnosis procedure to locate the fault. Based on the relay network, the faulty part can be bypassed by the single-phase bridge arm, while the single-phase bridge arm and the healthy part of the converter can form a fault-tolerant topology to sustain the driving operation. A fault-tolerant control strategy is developed to decrease the influence of the fault. Furthermore, the proposed fault-tolerant strategy can be applied to three-phase 12/8 SRM and four-phase 8/6 SRM. Simulation results in MATLAB/Simulink and experiments on a three-phase 12/8 SRM and a four-phase 8/6 SRM validate the effectiveness of the proposed strategy, which may have significant economic implications in traction drive systems.
Resumo:
1. Our goal was to quantify short-term phosphorus (P) partitioning and identify the ecosystem components important to P cycling in wetland ecosystems. To do this, we added P radiotracer to oligotrophic, P-limited Everglades marshes. 32PO4 was added to the water column in six 1-m2 enclosed mesocosms located in long-hydroperiod marshes of Shark River Slough, Everglades National Park. Ecosystem components were then repeatedly sampled over 18 days. 2. Water column particulates (>0.45 μm) incorporated radiotracer within the first minute after dosing and stored 95–99% of total water column 32P activity throughout the study. Soluble (<0.45 μm) 32P in the water column, in contrast, was always <5% of the 32P in surface water. Periphyton, both floating and attached to emergent macrophytes, had the highest specific activity of 32P (Bq g−131P) among the different ecosystem components. Fish and aquatic macroinvertebrates also had high affinity for P, whereas emergent macrophytes, soil and flocculent detrital organic matter (floc) had the lowest specific activities of radiotracer. 3. Within the calcareous, floating periphyton mats, 81% of the initial 32P uptake was associated with Ca, but most of this 32P entered and remained within the organic pool (Ca-associated = 14% of total) after 1 day. In the floc layer, 32P rapidly entered the microbial pool and the labile fraction was negligible for most of the study. 4. Budgeting of the radiotracer indicated that 32P moved from particulates in the water column to periphyton and floc and then to the floc and soil over the course of the 18 day incubations. Floc (35% of total) and soil (27%) dominated 32P storage after 18 days, with floating periphyton (12%) and surface water (10%) holding smaller proportions of total ecosystem 32P. 5. To summarise, oligotrophic Everglades marshes exhibited rapid uptake and retention of labile 32P. Components dominated by microbes appear to control short-term P cycling in this oligotrophic ecosystem.
Resumo:
In Enterobacteriaceae, the transcriptional regulator AmpR, a member of the LysR family, regulates the expression of a chromosomal β-lactamase AmpC. The regulatory repertoire of AmpR is broader in Pseudomonas aeruginosa, an opportunistic pathogen responsible for numerous acute and chronic infections including cystic fibrosis. Previous studies showed that in addition to regulating ampC, P. aeruginosa AmpR regulates the sigma factor AlgT/U and production of some quorum sensing (QS)-regulated virulence factors. In order to better understand the ampR regulon, the transcriptional profiles generated using DNA microarrays and RNA-Seq of the prototypic P. aeruginosa PAO1 strain with its isogenic ampR deletion mutant, PAOΔampR were analyzed. Transcriptome analysis demonstrates that the AmpR regulon is much more extensive than previously thought influencing the differential expression of over 500 genes. In addition to regulating resistance to β-lactam antibiotics via AmpC, AmpR also regulates non-β-lactam antibiotic resistance by modulating the MexEF-OprN efflux pump. Virulence mechanisms including biofilm formation, QS-regulated acute virulence, and diverse physiological processes such as oxidative stress response, heat-shock response and iron uptake are AmpR-regulated. Real-time PCR and phenotypic assays confirmed the transcriptome data. Further, Caenorhabditis elegans model demonstrates that a functional AmpR is required for full pathogenicity of P. aeruginosa. AmpR, a member of the core genome, also regulates genes in the regions of genome plasticity that are acquired by horizontal gene transfer. The extensive AmpR regulon included other transcriptional regulators and sigma factors, accounting for the extensive AmpR regulon. Gene expression studies demonstrate AmpR-dependent expression of the QS master regulator LasR that controls expression of many virulence factors. Using a chromosomally tagged AmpR, ChIP-Seq studies show direct AmpR binding to the lasR promoter. The data demonstrates that AmpR functions as a global regulator in P. aeruginosa and is a positive regulator of acute virulence while negatively regulating chronic infection phenotypes. In summary, my dissertation sheds light on the complex regulatory circuit in P. aeruginosa to provide a better understanding of the bacterial response to antibiotics and how the organism coordinately regulates a myriad of virulence factors.
Resumo:
Contrary to prevailing opinions, Neill Blomkamp’s recent feature film Chappie is not a movie about robots or artificial intelligence. It is not Robocop. It is not Short Circuit. It is also not District 9 or Elysium. Chappie is a movie about humanity’s dialectically creative and destructive potential. It is a movie about how it is that humans come to behave how they do through their social and material circumstances, as well as the barbaric results when the two are mixed under the thoroughly undemocratic conditions of neoliberal capitalism.
Resumo:
Carbon dioxide is one of the most important greenhouse gases which are increasing in atmospheric concentration due to human activities. For using natural CO2 dynamics as a key to understanding the climatic consequences of anthropogenic pCO2 rise, the ocean plays an important role due to its much larger carbon pool compared to the atmosphere. By studying the ratio of stable carbon isotopes in organic matter from marine sediments, it is possible to estimate the partial pressure of CO2 in surface waters during ancient times. The organic compound C37:2 alkenone, whose sole origin is from autotrophic marine algae, was chosen for d13C analysis and its isotopic composition used to reconstruct past PCO2 levels in the surface layer of the eastern Angola Basin for the last 200,000 years. In addition to the variation of ancient concentrations of dissolved CO2 ([CO2(aq)] = ce), the effect of carbon demand which depends on algal growth rate was considered. Here to, carbon isotopic fractionation of C37:2 alkenones (ep) in core-top sediments from the equatorial and the South Atlantic was calibrated against pre-industrial [CO2(aq)] and phosphate concentrations in surface waters. From these data, a variable b = (25 per mil - ep) * ce which reflects intracellular carbon demand was calculated. This variable b correlates with the ambient concentration of seawater phosphate and depends on growth rates. The bulk sediment d15N was used as a proxy parameter for calculating ancient b-values, taking into account that d15N in core-top sediments is correlated to phosphate concentration in modern surface waters. On this basis, the alkenone d13C record of GeoB1016-3 documents a permanent oceanic source for atmospheric carbon dioxide during the last 200,000 years. As a consequence of using d15N derived b-values instead of b = constant, the Angola Basin appears to have been an even stronger CO2 source during glacial periods than at present. Qualitatively similar results were reported by Jasper et al. (1994) for the central Equatorial Pacific. These observations suggest that enhanced productivity of low-latitude upwelling areas during glacial periods is not responsible for the lower CO2 content of the glacial atmosphere.
Resumo:
This article will review major features of the 'giant' Cape Blanc filament off Mauritania with regard to the transport of chlorophyll and organic carbon from the shelf to the open ocean. Within the filament, chlorophyll is transported about 400 km offshore. Modelled particle distributions along a zonal transect at 21°N showed that particles with a sinking velocity of 5 m d**-1 are advected offshore by up to 600 km in subsurface particle clouds generally located between 400 m and 800 m water depth, forming an Intermediate Nepheloid Layer (INL). It corresponds to the depth of the oxygen minimum zone. Heavier particles with a sinking velocity of 30 m d**-1 are transported from the shelf within the Bottom Layer (BL) of more than 1000 m thickness, largely following the topography of the bottom slope. The particles advected within the BL contribute to the enhanced winter-spring mass fluxes collected at the open-ocean mesotrophic sediment trap site CB-13 (200 nm offshore), due to a long distance advection in deeper waters. The lateral contribution to the deep sediment trap in winter-spring is estimated to be 63% and 72% for organic carbon and total mass, respectively, whereas the lateral input for both components on an annual basis is estimated to be in the order of 15%. Biogenic opal increases almost fivefold from the upper to the lower mesotrophic CB-13 trap, also pointing to an additional source for biogenic silica from eutrophic coastal waters. Blooms obviously sink in smaller, probably mesoscale-sized patches with variable settling rates, depending on the type of aggregated particles and their ballast content. Generally, particle sinking rates are exceptionally high off NW Africa. Very high chlorophyll values and a large size of the Cape Blanc filament in 1998-1999 are also documented in enhanced total mass and organic carbon fluxes. An increasing trend in satellite chlorophyll concentrations and the size of the Cape Blanc filament between 1997 and 2008 as observed for other coastal upwelling areas is not documented.
Resumo:
The main goal of this thesis is to show the versatility of glancing angle deposition (GLAD) thin films in applications. This research is first focused on studying the effect of select deposition variables in GLAD thin films and secondly, to demonstrate the flexibility of GLAD films to be incorporated in two different applications: (1) as a reflective coating in low-level concentration photovoltaic systems, and (2) as an anode structure in dye-sensitized solar cells (DSSC). A particular type of microstructure composed of tilted micro-columns of titanium is fabricated by GLAD. The microstructures form elongated and fan-like tilted micro-columns that demonstrate anisotropic scattering. The thin films texture changes from fiber texture to tilted fiber texture by increasing the vapor incidence angle. At very large deposition angles, biaxial texture forms. The morphology of the thin films deposited under extreme shadowing condition and at high temperature (below recrystallization zone) shows a porous and inclined micro-columnar morphology, resulting from the dominance of shadowing over adatom surface diffusion. The anisotropic scattering behavior of the tilted Ti thin film coatings is quantified by bidirectional reflectance distribution function (BRDF) measurements and is found to be consistent with reflectance from the microstructure acting as an array of inclined micro-mirrors that redirect the incident light in a non-specular reflection. A silver-coating of the surface of the tilted-Ti micro-columns is performed to enhance the total reflectance of the Ti-thin films while keeping the anisotropic scattering behavior. By using such coating is as a booster reflector in a laboratory-scale low-level concentration photovoltaic system, the short-circuit current of the reference silicon solar cell by 25%. Finally, based on the scattering properties of the tilted microcolumnar microstructure, its scattering effect is studied as a part of titanium dioxide microstructure for the anode in DSSCs. GLAD-fabricated TiO2 microstructures for the anode in a DSSC, consisting of vertical micro-columns, and combined vertical topped with tilted micro-columns are compared. The solar cell with the two-part microstructure shows the highest monochromatic incident photon to current efficiency with 20% improvement compared to the vertical microstructure, and the efficiency of the cell increases from 1.5% to 2% due to employing the scattering layer.