890 resultados para Fusion of multiple images
Resumo:
OBJECTIVE: To determine the accuracy of magnetic resonance imaging criteria for the early diagnosis of multiple sclerosis in patients with suspected disease. DESIGN: Systematic review. DATA SOURCES: 12 electronic databases, citation searches, and reference lists of included studies. Review methods Studies on accuracy of diagnosis that compared magnetic resonance imaging, or diagnostic criteria incorporating such imaging, to a reference standard for the diagnosis of multiple sclerosis. RESULTS: 29 studies (18 cohort studies, 11 other designs) were included. On average, studies of other designs (mainly diagnostic case-control studies) produced higher estimated diagnostic odds ratios than did cohort studies. Among 15 studies of higher methodological quality (cohort design, clinical follow-up as reference standard), those with longer follow-up produced higher estimates of specificity and lower estimates of sensitivity. Only two such studies followed patients for more than 10 years. Even in the presence of many lesions (> 10 or > 8), magnetic resonance imaging could not accurately rule multiple sclerosis in (likelihood ratio of a positive test result 3.0 and 2.0, respectively). Similarly, the absence of lesions was of limited utility in ruling out a diagnosis of multiple sclerosis (likelihood ratio of a negative test result 0.1 and 0.5). CONCLUSIONS: Many evaluations of the accuracy of magnetic resonance imaging for the early detection of multiple sclerosis have produced inflated estimates of test performance owing to methodological weaknesses. Use of magnetic resonance imaging to confirm multiple sclerosis on the basis of a single attack of neurological dysfunction may lead to over-diagnosis and over-treatment.
Resumo:
BACKGROUND: Assessment of lung volume (FRC) and ventilation inhomogeneities with ultrasonic flowmeter and multiple breath washout (MBW) has been used to provide important information about lung disease in infants. Sub-optimal adjustment of the mainstream molar mass (MM) signal for temperature and external deadspace may lead to analysis errors in infants with critically small tidal volume changes during breathing. METHODS: We measured expiratory temperature in human infants at 5 weeks of age and examined the influence of temperature and deadspace changes on FRC results with computer simulation modeling. A new analysis method with optimized temperature and deadspace settings was then derived, tested for robustness to analysis errors and compared with the previously used analysis methods. RESULTS: Temperature in the facemask was higher and variations of deadspace volumes larger than previously assumed. Both showed considerable impact upon FRC and LCI results with high variability when obtained with the previously used analysis model. Using the measured temperature we optimized model parameters and tested a newly derived analysis method, which was found to be more robust to variations in deadspace. Comparison between both analysis methods showed systematic differences and a wide scatter. CONCLUSION: Corrected deadspace and more realistic temperature assumptions improved the stability of the analysis of MM measurements obtained by ultrasonic flowmeter in infants. This new analysis method using the only currently available commercial ultrasonic flowmeter in infants may help to improve stability of the analysis and further facilitate assessment of lung volume and ventilation inhomogeneities in infants.
Resumo:
PURPOSE: To determine sensitivity, specificity and inter-observer variability of different whole-body MRI (WB-MRI) sequences in patients with multiple myeloma (MM). METHODS AND MATERIALS: WB-MRI using a 1.5T MRI scanner was performed in 23 consecutive patients (13 males, 10 females; mean age 63+/-12 years) with histologically proven MM. All patients were clinically classified according to infiltration (low-grade, n=7; intermediate-grade, n=7; high-grade, n=9) and to the staging system of Durie and Salmon PLUS (stage I, n=12; stage II, n=4; stage III, n=7). The control group consisted of 36 individuals without malignancy (25 males, 11 females; mean age 57+/-13 years). Two observers independently evaluated the following WB-MRI sequences: T1w-TSE (T1), T2w-TIRM (T2), and the combination of both sequences, including a contrast-enhanced T1w-TSE with fat-saturation (T1+/-CE/T2). They had to determine growth patterns (focal and/or diffuse) and the MRI sequence that provided the highest confidence level in depicting the MM lesions. Results were calculated on a per-patient basis. RESULTS: Visual detection of MM was as follows: T1, 65% (sensitivity)/85% (specificity); T2, 76%/81%; T1+/-CE/T2, 67%/88%. Inter-observer variability was as follows: T1, 0.3; T2, 0.55; T1+/-CE/T2, 0.55. Sensitivity improved depending on infiltration grade (T1: 1=60%; 2=36%; 3=83%; T2: 1=70%; 2=71%; 3=89%; T1+/-CE/T2: 1=50%; 2=50%; 3=89%) and clinical stage (T1: 1=58%; 2=63%; 3=79%; T2: 1=58%; 2=88%; 3=100%; T1+/-CE/T2: 1=50%; 2=63%; 3=100%). T2w-TIRM sequences achieved the best reliability in depicting the MM lesions (65% in the mean of both readers). CONCLUSIONS: T2w-TIRM sequences achieved the highest level of sensitivity and best reliability, and thus might be valuable for initial assessment of MM. For an exact staging and grading the examination protocol should encompass unenhanced and enhanced T1w-MRI sequences, in addition to T2w-TIRM.
Resumo:
Thirteen spontaneous multiple-antibiotic-resistant (Mar) mutants of Escherichia coli AG100 were isolated on Luria-Bertani (LB) agar in the presence of tetracycline (4 microg/ml). The phenotype was linked to insertion sequence (IS) insertions in marR or acrR or unstable large tandem genomic amplifications which included acrAB and which were bordered by IS3 or IS5 sequences. Five different lon mutations, not related to the Mar phenotype, were also found in 12 of the 13 mutants. Under specific selective conditions, most drug-resistant mutants appearing late on the selective plates evolved from a subpopulation of AG100 with lon mutations. That the lon locus was involved in the evolution to low levels of multidrug resistance was supported by the following findings: (i) AG100 grown in LB broth had an important spontaneous subpopulation (about 3.7x10(-4)) of lon::IS186 mutants, (ii) new lon mutants appeared during the selection on antibiotic-containing agar plates, (iii) lon mutants could slowly grow in the presence of low amounts (about 2x MIC of the wild type) of chloramphenicol or tetracycline, and (iv) a lon mutation conferred a mutator phenotype which increased IS transposition and genome rearrangements. The association between lon mutations and mutations causing the Mar phenotype was dependent on the medium (LB versus MacConkey medium) and the antibiotic used for the selection. A previously reported unstable amplifiable high-level resistance observed after the prolonged growth of Mar mutants in a low concentration of tetracycline or chloramphenicol can be explained by genomic amplification.
Resumo:
DMT1 (divalent metal-ion transporter 1) is a widely expressed metal-ion transporter that is vital for intestinal iron absorption and iron utilization by most cell types throughout the body, including erythroid precursors. Mutations in DMT1 cause severe microcytic anaemia in animal models. Four DMT1 isoforms that differ in their N- and C-termini arise from mRNA transcripts that vary both at their 5'-ends (starting in exon 1A or exon 1B) and at their 3'-ends giving rise to mRNAs containing (+) or lacking (-) the 3'-IRE (iron-responsive element) and resulting in altered C-terminal coding sequences. To determine whether these variations result in functional differences between isoforms, we explored the functional properties of each isoform using the voltage clamp and radiotracer assays in cRNA-injected Xenopus oocytes. 1A/IRE+-DMT1 mediated Fe2+-evoked currents that were saturable (K(0.5)(Fe) approximately 1-2 microM), temperature-dependent (Q10 approximately 2), H+-dependent (K(0.5)(H) approximately 1 muM) and voltage-dependent. 1A/IRE+-DMT1 exhibited the provisional substrate profile (ranked on currents) Cd2+, Co2+, Fe2+, Mn2+>Ni2+, V3+>>Pb2+. Zn2+ also evoked large currents; however, the zinc-evoked current was accounted for by H+ and Cl- conductances and was not associated with significant Zn2+ transport. 1B/IRE+-DMT1 exhibited the same substrate profile, Fe2+ affinity and dependence on the H+ electrochemical gradient. Each isoform mediated 55Fe2+ uptake and Fe2+-evoked currents at low extracellular pH. Whereas iron transport activity varied markedly between the four isoforms, the activity for each correlated with the density of anti-DMT1 immunostaining in the plasma membrane, and the turnover rate of the Fe2+ transport cycle did not differ between isoforms. Therefore all four isoforms of human DMT1 function as metal-ion transporters of equivalent efficiency. Our results reveal that the N- and C-terminal sequence variations among the DMT1 isoforms do not alter DMT1 functional properties. We therefore propose that these variations serve as tissue-specific signals or cues to direct DMT1 to the appropriate subcellular compartments (e.g. in erythroid cells) or the plasma membrane (e.g. in intestine).
Resumo:
OBJECTIVES: In patients with a clinically isolated syndrome (CIS), the time interval to convert to clinically definite multiple sclerosis (CDMS) is highly variable. Individual and geographical prognostic factors remain to be determined. Whether anti-myelin antibodies may predict the risk of conversion to CDMS in Swiss CIS patients of the canton Berne was the subject of the study. METHODS: Anti-myelin oligodendrocyte glycoprotein and anti-myelin basic protein antibodies were determined prospectively in patients admitted to our department. RESULTS: After a mean follow-up of 12 months, none of nine antibody-negative, but 22 of 30 antibody-positive patients had progressed to CDMS. Beta-Interferon treatment delayed the time to conversion from a mean of 7.4 to 10.9 months. CONCLUSIONS: In a Swiss cohort, antibody-negative CIS patients have a favorable short-term prognosis, and antibody-positive patients benefit from early treatment.
Resumo:
Large parts of the world are subjected to one or more natural hazards, such as earthquakes, tsunamis, landslides, tropical storms (hurricanes, cyclones and typhoons), costal inundation and flooding. Virtually the entire world is at risk of man-made hazards. In recent decades, rapid population growth and economic development in hazard-prone areas have greatly increased the potential of multiple hazards to cause damage and destruction of buildings, bridges, power plants, and other infrastructure; thus posing a grave danger to the community and disruption of economic and societal activities. Although an individual hazard is significant in many parts of the United States (U.S.), in certain areas more than one hazard may pose a threat to the constructed environment. In such areas, structural design and construction practices should address multiple hazards in an integrated manner to achieve structural performance that is consistent with owner expectations and general societal objectives. The growing interest and importance of multiple-hazard engineering has been recognized recently. This has spurred the evolution of multiple-hazard risk-assessment frameworks and development of design approaches which have paved way for future research towards sustainable construction of new and improved structures and retrofitting of the existing structures. This report provides a review of literature and the current state of practice for assessment, design and mitigation of the impact of multiple hazards on structural infrastructure. It also presents an overview of future research needs related to multiple-hazard performance of constructed facilities.
Resumo:
Inexpensive, commercial available off-the-shelf (COTS) Global Positioning Receivers (GPS) have typical accuracy of ±3 meters when augmented by the Wide Areas Augmentation System (WAAS). There exist applications that require position measurements between two moving targets. The focus of this work is to explore the viability of using clusters of COTS GPS receivers for relative position measurements to improve their accuracy. An experimental study was performed using two clusters, each with five GPS receivers, with a fixed distance of 4.5 m between the clusters. Although the relative position was fixed, the entire system of ten GPS receivers was on a mobile platform. Data was recorded while moving the system over a rectangular track with a perimeter distance of 7564 m. The data was post processed and yielded approximately 1 meter accuracy for the relative position vector between the two clusters.
Resumo:
OBJECTIVE: To test the feasibility of and interactions among three software-driven critical care protocols. DESIGN: Prospective cohort study. SETTING: Intensive care units in six European and American university hospitals. PATIENTS: 174 cardiac surgery and 41 septic patients. INTERVENTIONS: Application of software-driven protocols for cardiovascular management, sedation, and weaning during the first 7 days of intensive care. MEASUREMENTS AND RESULTS: All protocols were used simultaneously in 85% of the cardiac surgery and 44% of the septic patients, and any one of the protocols was used for 73 and 44% of study duration, respectively. Protocol use was discontinued in 12% of patients by the treating clinician and in 6% for technical/administrative reasons. The number of protocol steps per unit of time was similar in the two diagnostic groups (n.s. for all protocols). Initial hemodynamic stability (a protocol target) was achieved in 26+/-18 min (mean+/-SD) in cardiac surgery and in 24+/-18 min in septic patients. Sedation targets were reached in 2.4+/-0.2h in cardiac surgery and in 3.6 +/-0.2h in septic patients. Weaning protocol was started in 164 (94%; 154 extubated) cardiac surgery and in 25 (60%; 9 extubated) septic patients. The median (interquartile range) time from starting weaning to extubation (a protocol target) was 89 min (range 44-154 min) for the cardiac surgery patients and 96 min (range 56-205 min) for the septic patients. CONCLUSIONS: Multiple software-driven treatment protocols can be simultaneously applied with high acceptance and rapid achievement of primary treatment goals. Time to reach these primary goals may provide a performance indicator.
Resumo:
In order to assess the clinical relevance of a slice-to-volume registration algorithm, this technique was compared to manual registration. Reformatted images obtained from a diagnostic CT examination of the lower abdomen were reviewed and manually registered by 41 individuals. The results were refined by the algorithm. Furthermore, a fully automatic registration of the single slices to the whole CT examination, without manual initialization, was also performed. The manual registration error for rotation and translation was found to be 2.7+/-2.8 degrees and 4.0+/-2.5 mm. The automated registration algorithm significantly reduced the registration error to 1.6+/-2.6 degrees and 1.3+/-1.6 mm (p = 0.01). In 3 of 41 (7.3%) registration cases, the automated registration algorithm failed completely. On average, the time required for manual registration was 213+/-197 s; automatic registration took 82+/-15 s. Registration was also performed without any human interaction. The resulting registration error of the algorithm without manual pre-registration was found to be 2.9+/-2.9 degrees and 1.1+/-0.2 mm. Here, a registration took 91+/-6 s, on average. Overall, the automated registration algorithm improved the accuracy of manual registration by 59% in rotation and 325% in translation. The absolute values are well within a clinically relevant range.
Resumo:
The humanized anti-alpha(4) integrin Ab Natalizumab is an effective treatment for relapsing-remitting multiple sclerosis. Natalizumab is thought to exert its therapeutic efficacy by blocking the alpha(4) integrin-mediated binding of circulating immune cells to the blood-brain barrier (BBB). As alpha(4) integrins control other immunological processes, natalizumab may, however, execute its beneficial effects elsewhere. By means of intravital microscopy we demonstrate that natalizumab specifically inhibits the firm adhesion but not the rolling or capture of human T cells on the inflamed BBB in mice with acute experimental autoimmune encephalomyelitis (EAE). The efficiency of natalizumab to block T cell adhesion to the inflamed BBB was found to be more effective in EAE than in acute systemic TNF-alpha-induced inflammation. Our data demonstrate that alpha(4) integrin-mediated adhesion of human T cells to the inflamed BBB during EAE is efficiently blocked by natalizumab and thus provide the first direct in vivo proof of concept of this therapy in multiple sclerosis.