977 resultados para Functional network
Resumo:
Chagas disease is still a major public health problem in Latin America. Its causative agent, Trypanosoma cruzi, can be typed into three major groups, T. cruzi I, T. cruzi II and hybrids. These groups each have specific genetic characteristics and epidemiological distributions. Several highly virulent strains are found in the hybrid group; their origin is still a matter of debate. The null hypothesis is that the hybrids are of polyphyletic origin, evolving independently from various hybridization events. The alternative hypothesis is that all extant hybrid strains originated from a single hybridization event. We sequenced both alleles of genes encoding EF-1 alpha, actin and SSU rDNA of 26 T. cruzi strains and DHFR-TS and TR of 12 strains. This information was used for network genealogy analysis and Bayesian phylogenies. We found T. cruzi I and T. cruzi II to be monophyletic and that all hybrids had different combinations of T. cruzi I and T. cruzi II haplotypes plus hybrid-specific haplotypes. Bootstrap values (networks) and posterior probabilities (Bayesian phylogenies) of clades supporting the monophyly of hybrids were far below the 95% confidence interval, indicating that the hybrid group is polyphyletic. We hypothesize that T. cruzi I and T. cruzi II are two different species and that the hybrids are extant representatives of independent events of genome hybridization, which sporadically have sufficient fitness to impact on the epidemiology of Chagas disease.
Resumo:
The alternative low-spin states of Fe3+ and Fe2+ cytochrome c induced by SDS or AOT/hexane reverse micelles exhibited the heme group in a less rhombic symmetry and were characterized by electron paramagnetic resonance, UV-visible, CD, magnetic CD, fluorescence, and Raman resonance. Consistent with the replacement of Met 80 by another strong field ligand at the sixth heme iron coordination position, Fe3+ ALSScytc exhibited 1-nm Soret band blue shift and e enhancement accompanied by disappearance of the 695-nm charge transfer band. The Raman resonance, CD, and magnetic CD spectra of Fe3+ and Fe2+ ALSScytc exhibited significant changes suggestive of alterations in the heme iron microenvironment and conformation and should not be assigned to unfold because the Trp(59) fluorescence remained quenched by the neighboring heme group. ALSScytc was obtained with His(33) and His(26) carboxyethoxylated horse cytochrome c and with tuna cytochrome c (His(33) replaced by Asn) pointing out Lys(79) as the probable heme iron ligand. Fe3+ ALSScytc retained the capacity to cleave tert-butylhydroperoxide and to be reduced by dithiothreitol and diphenylacetaldehyde but not by ascorbate. Compatible with a more open heme crevice, ALSScytc exhibited a redox potential similar to 200 mV lower than the wild-type protein (1220 mV) and was more susceptible to the attack of free radicals.
Resumo:
We have investigated the stability, electronic properties, Rayleigh (elastic), and Raman (inelastic) depolarization ratios, infrared and Raman absorption vibrational spectra of fullerenols [C(60)(OH)(n)] with different degrees of hydroxylation by using all-electron density-functional-theory (DFT) methods. Stable arrangements of these molecules were found by means of full geometry optimizations using Becke's three-parameter exchange functional with the Lee, Yang, and Parr correlation functional. This DFT level has been combined with the 6-31G(d,p) Gaussian-type basis set, as a compromise between accuracy and capability to treat highly hydroxylated fullerenes, e.g., C(60)(OH)(36). Thus, the molecular properties of fullerenols were systematically analyzed for structures with n=1, 2, 3, 4, 8, 10, 16, 18, 24, 32, and 36. From the electronic structure analysis of these molecules, we have evidenced an important effect related to the weak chemical reactivity of a possible C(60)(OH)(24) isomer. To investigate Raman scattering and the vibrational spectra of the different fullerenols, frequency calculations are carried out within the harmonic approximation. In this case a systematic study is only performed for n=1-4, 8, 10, 16, 18, and 24. Our results give good agreements with the expected changes in the spectral absorptions due to the hydroxylation of fullerenes.
Resumo:
Platinum plays an important role in catalysis and electrochemistry, and it is known that the direct interaction of oxygen with Pt surfaces can lead to the formation of platinum oxides (PtO(x)), which can affect the reactivity. To contribute to the atomistic understanding of the atomic structure of PtO(x), we report a density functional theory study of the atomic structure of bulk PtO(x) (1 <= x <= 2). From our calculations, we identified a lowest-energy structure (GeS type, space group Pnma) for PtO, which is 0.181 eV lower in energy than the structure suggested by W. J. Moore and L. Pauling [J. Am. Chem. Soc. 63, 1392 (1941)] (PtS type). Furthermore, two atomic structures were identified for PtO(2), which are almost degenerate in energy with the lowest-energy structure reported so far for PtO(2) (CaCl(2) type). Based on our results and analysis, we suggest that Pt and O atoms tend to form octahedron motifs in PtO(x) even at lower O composition by the formation of Pt-Pt bonds.
Resumo:
1. Little is known about the role of deep roots in the nutrition of forest trees and their ability to provide a safety-net service taking up nutrients leached from the topsoil. 2. To address this issue, we studied the potential uptake of N, K and Ca by Eucalyptus grandis trees (6 years of age - 25 m mean height), in Brazil, as a function of soil depth, texture and water content. We injected NO(3)(-)- (15)N, Rb(+) (analogue of K(+)) and Sr(2+) (analogue of Ca(2+)) tracers simultaneously in a solution through plastic tubes at 10, 50, 150 and 300 cm in depth in a sandy and a clayey Ferralsol soil. A complete randomized design was set up with three replicates of paired trees per injection depth and soil type. Recently expanded leaves were sampled at various times after tracer injection in the summer, and the experiment was repeated in the winter. Soil water contents were continuously monitored at the different depths in the two soils. 3. Determination of foliar Rb and Sr concentrations and (15)N atom % made it possible to estimate the relative uptake potential (RUP) of tracer injections from the four soil depths and the specific RUP (SRUP), defined as RUP, per unit of fine root length density in the corresponding soil layer. 4. The highest tracer uptake rates were found in the topsoil, but contrasting RUP distributions were observed for the three tracers. Whilst the RUP was higher for NO(3)(-)- (15)N than for Rb(+) and Sr(2+) in the upper 50 cm of soil, the highest SRUP values for Sr(2+) and Rb(+) were found at a depth of 300 cm in the sandy soil, as well as in the clayey soil when gravitational solutions reached that depth. 5. Our results suggest that the fine roots of E. grandis trees exhibit contrasting potential uptake rates with depth depending on the nutrient. This functional specialization of roots might contribute to the high growth rates of E. grandis trees, efficiently providing the large amounts of nutrients required throughout the development of these fast-growing plantations.
Resumo:
Aims To test the effects of early exercise training (ET) on left ventricular (LV) and autonomic functions, haemodynamics, tissues blood flows (BFs), maximal oxygen consumption (VO(2) max), and mortality after myocardial infarction (MI) in rats. Methods and results Male Wistar rats were divided into: control (C), sedentary-infarcted (SI), and trained-infarcted (TI). One week after MI, TI group underwent an ET protocol (90 days, 50-70% VO2 max). Left ventricular function was evaluated noninvasively and invasively. Baroreflex sensitivity, heart rate variability, and pulse interval were measured. Cardiac output (CO) and regional BFs were determined using coloured microspheres. Infarcted area was reduced in TI (19 +/- 6%) compared with SI (34 +/- 5%) after ET. Exercise training improved the LV and autonomic functions, the CO and regional BF changes induced by MI, as well as increased SERCA2 expression and mRNA vascular endothelial growth factor levels. These changes brought about by ET resulted in mortality rate reduction in the TI (13%) group compared with the SI (54%) group. Conclusion Early aerobic ET reduced cardiac and peripheral dysfunctions and preserved cardiovascular autonomic control after MI in trained rats. Consequently, these ET-induced changes resulted in improved functional capacity and survival after MI.
Resumo:
In order to evaluate the effects of uncertainty about direction of mechanical perturbation and supra-postural task constraint on postural control young adults had their upright stance perturbed while holding a tray in a horizontal position Stance was perturbed by moving forward or backward a supporting platform contrasting situations of certainty versus uncertainty of direction of displacement Increased constraint on postural stability was Imposed by a supra-postural task of equilibrating a cylinder on the tray Performance was assessed through EMG of anterior leg muscles angular displacement of the main Joints involved in the postural reactions and displacement of the tray Results showed that both certainty on the direction of perturbation and Increased supra-postural task constraint led to decreased angular displacement of the knee and the hip Furthermore combination of certainty and high supra-postural task constraint produced shorter latency of muscular activation Such postural responses were paralleled by decreased displacement of the tray Thesi results suggest a functional integration between the tasks with central set priming reactive postural responses from contextual cues and Increased stability demand (C) 2010 Elsevier B V All rights reserved
Resumo:
The technique based on sol-gel approach was used to generate silica matrices derivatives by hydrolysis of silane compounds. The present work evaluates a hybrid matrix obtained with tetraethoxysilane (TEOS) and polyvinyl alcohol (PVA) on the immobilization yield of lipase from Pseudomonas fluorescens. The resulting polysiloxane-polyvinyl alcohol (POS-PVA) matrix combines the property of PVA as a suitable polymer to retain proteins with an excellent optical, thermal and chemical stability of the host silicon oxide matrix. Aiming to render adequate functional groups to the covalent binding with the enzyme the POS-PVA matrix was chemically modified using epichlorohydrin. The results were compared with immobilized derivative on POS-PVA activated with glutaraldehyde. Immobilization yield based on the recovered lipase activity depended on the activating agent and the highest efficiency (32%) was attained when lipase was immobilized on POS-PVA activated with epichlorohydrin, which, probably, provided more linkage points for the covalent bind of the enzyme on the support. This was confirmed by determining the morphological properties using different techniques as X-ray diffraction and scanning electron microscopy (SEM). Comparative studies were carried out to attain optimal activities for free lipase and immobilized systems. For this purpose, a central composite experimental design with different combinations of pH and temperature was performed. Enzymatic hydrolysis with the immobilized enzyme in the framework of the Michaelis-Menten mechanism was also reported. Under optimum conditions, the immobilized derivative on POS-PVA activated with epichlorohydrin showed to have more affinity for the substrate in the hydrolysis of olive oil, with a Michaelis-Menten constant value (K-m) of 293 mM, compared to the value of 401 mM obtained for the immobilized lipase on support activated with glutaraldehyde. Data generated by DSC showed that both immobilized derivatives have similar thermal stabilities. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to correlate clinical and functional evaluations with kinematic variables of upper limp reach-to-grasp movement in patients with tetraplegia. Twenty chronic patients were selected to perform reach-to-grasp kinematic assessment using a target placed at a distance equal to the arm`s length. Kinematic variables (hand peak velocity, movement time, percent time-to-maximal velocity, index of curvature, number of peaks, and joint range of motion) were correlated to clinical (Standard Neurological Classification of Spinal Cord Injury-American Spinal Injury Association) and functional [Functional Independence Measure (FIM) and Spinal Cord Independence Measure II (SCIM II)) evaluation scores. Twenty control participants were also selected to obtain normal reference parameters. There was a positive correlation between total motor index and FIM (r=0.6089; P=0.0044) and SCIM II (r=0.5229; P=0.018). Both functional scores showed positive correlation with each other (r=0.8283; P<0.0001). A correlation was also observed between the right and left motor indices, the motor AM, and the SCIM II in most of the reach-to-grasp kinematic variables studied (hand peak velocity, movement time, index of curvature, and number of peaks). In contrast, for the joint range of motion (shoulder, elbow, and wrist), only the wrist in the horizontal plane showed correlation with clinical variables. This study shows that muscle strength assessed by the American Spinal Injury Association motor index influences the reach-to-grasp kinematic variables of patients with tetraplegia. However, the functional assessments did not present the same influence.
Resumo:
We proposed a connection admission control (CAC) to monitor the traffic in a multi-rate WDM optical network. The CAC searches for the shortest path connecting source and destination nodes, assigns wavelengths with enough bandwidth to serve the requests, supervises the traffic in the most required nodes, and if needed activates a reserved wavelength to release bandwidth according to traffic demand. We used a scale-free network topology, which includes highly connected nodes ( hubs), to enhance the monitoring procedure. Numerical results obtained from computational simulations show improved network performance evaluated in terms of blocking probability.
Resumo:
This paper analyses an optical network architecture composed by an arrangement of nodes equipped with multi-granular optical cross-connects (MG-OXCs) in addition to the usual optical cross-connects (OXCs). Then, selected network nodes can perform both waveband as well as traffic grooming operations and our goal is to assess the improvement on network performance brought by these additional capabilities. Specifically, the influence of the MG-OXC multi-granularity on the blocking probability is evaluated for 16 classes of service over a network based on the NSFNet topology. A mechanism of fairness in bandwidth capacity is also added to the connection admission control to manage the blocking probabilities of all kind of bandwidth requirements. Comprehensive computational simulation are carried out to compare eight distinct node architectures, showing that an adequate combination of waveband and single-wavelength ports of the MG-OXCs and OXCs allow a more efficient operation of a WDM optical network carrying multi-rate traffic.
Resumo:
This paper presents a new approach to the transmission loss allocation problem in a deregulated system. This approach belongs to the set of incremental methods. It treats all the constraints of the network, i.e. control, state and functional constraints. The approach is based on the perturbation of optimum theorem. From a given optimal operating point obtained by the optimal power flow the loads are perturbed and a new optimal operating point that satisfies the constraints is determined by the sensibility analysis. This solution is used to obtain the allocation coefficients of the losses for the generators and loads of the network. Numerical results show the proposed approach in comparison to other methods obtained with well-known transmission networks, IEEE 14-bus. Other test emphasizes the importance of considering the operational constraints of the network. And finally the approach is applied to an actual Brazilian equivalent network composed of 787 buses, and it is compared with the technique used nowadays by the Brazilian Control Center. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The advantages offered by the electronic component LED (Light Emitting Diode) have resulted in a quick and extensive application of this device in the replacement of incandescent lights. In this combined application, however, the relationship between the design variables and the desired effect or result is very complex and renders it difficult to model using conventional techniques. This paper consists of the development of a technique using artificial neural networks that makes it possible to obtain the luminous intensity values of brake lights using SMD (Surface Mounted Device) LEDs from design data. This technique can be utilized to design any automotive device that uses groups of SMD LEDs. The results of industrial applications using SMD LED are presented to validate the proposed technique.
Resumo:
The activity of validating identified requirements for an information system helps to improve the quality of a requirements specification document and, consequently, the success of a project. Although various different support tools to requirements engineering exist in the market, there is still a lack of automated support for validation activity. In this context, the purpose of this paper is to make up for that deficiency, with the use of an automated tool, to provide the resources for the execution of an adequate validation activity. The contribution of this study is to enable an agile and effective follow-up of the scope established for the requirements, so as to lead the development to a solution which would satisfy the real necessities of the users, as well as to supply project managers with relevant information about the maturity of the analysts involved in requirements specification.
Resumo:
This paper develops H(infinity) control designs based on neural networks for fully actuated and underactuated cooperative manipulators. The neural networks proposed in this paper only adapt the uncertain dynamics of the robot manipulators. They work as a complement of the nominal model. The H(infinity) performance index includes the position errors as well the squeeze force errors between the manipulator end-effectors and the object, which represents a complete disturbance rejection scenario. For the underactuated case, the squeeze force control problem is more difficult to solve due to the loss of some degrees of manipulator actuation. Results obtained from an actual cooperative manipulator, which is able to work as a fully actuated and an underactuated manipulator, are presented. (C) 2008 Elsevier Ltd. All rights reserved.