922 resultados para Functional data analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep brain stimulation (DBS) for Parkinson's disease often alleviates the motor symptoms, but causes cognitive and emotional side effects in a substantial number of cases. Identification of the motor part of the subthalamic nucleus (STN) as part of the presurgical workup could minimize these adverse effects. In this study, we assessed the STN's connectivity to motor, associative, and limbic brain areas, based on structural and functional connectivity analysis of volunteer data. For the structural connectivity, we used streamline counts derived from HARDI fiber tracking. The resulting tracks supported the existence of the so-called "hyperdirect" pathway in humans. Furthermore, we determined the connectivity of each STN voxel with the motor cortical areas. Functional connectivity was calculated based on functional MRI, as the correlation of the signal within a given brain voxel with the signal in the STN. Also, the signal per STN voxel was explained in terms of the correlation with motor or limbic brain seed ROI areas. Both right and left STN ROIs appeared to be structurally and functionally connected to brain areas that are part of the motor, associative, and limbic circuit. Furthermore, this study enabled us to assess the level of segregation of the STN motor part, which is relevant for the planning of STN DBS procedures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Triggered event-related functional magnetic resonance imaging requires sparse intervals of temporally resolved functional data acquisitions, whose initiation corresponds to the occurrence of an event, typically an epileptic spike in the electroencephalographic trace. However, conventional fMRI time series are greatly affected by non-steady-state magnetization effects, which obscure initial blood oxygen level-dependent (BOLD) signals. Here, conventional echo-planar imaging and a post-processing solution based on principal component analysis were employed to remove the dominant eigenimages of the time series, to filter out the global signal changes induced by magnetization decay and to recover BOLD signals starting with the first functional volume. This approach was compared with a physical solution using radiofrequency preparation, which nullifies magnetization effects. As an application of the method, the detectability of the initial transient BOLD response in the auditory cortex, which is elicited by the onset of acoustic scanner noise, was used to demonstrate that post-processing-based removal of magnetization effects allows to detect brain activity patterns identical with those obtained using the radiofrequency preparation. Using the auditory responses as an ideal experimental model of triggered brain activity, our results suggest that reducing the initial magnetization effects by removing a few principal components from fMRI data may be potentially useful in the analysis of triggered event-related echo-planar time series. The implications of this study are discussed with special caution to remaining technical limitations and the additional neurophysiological issues of the triggered acquisition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A time series is a sequence of observations made over time. Examples in public health include daily ozone concentrations, weekly admissions to an emergency department or annual expenditures on health care in the United States. Time series models are used to describe the dependence of the response at each time on predictor variables including covariates and possibly previous values in the series. Time series methods are necessary to account for the correlation among repeated responses over time. This paper gives an overview of time series ideas and methods used in public health research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrogen and water are essential for plant growth and development. In this study, we designed experiments to produce gene expression data of poplar roots under nitrogen starvation and water deprivation conditions. We found low concentration of nitrogen led first to increased root elongation followed by lateral root proliferation and eventually increased root biomass. To identify genes regulating root growth and development under nitrogen starvation and water deprivation, we designed a series of data analysis procedures, through which, we have successfully identified biologically important genes. Differentially Expressed Genes (DEGs) analysis identified the genes that are differentially expressed under nitrogen starvation or drought. Protein domain enrichment analysis identified enriched themes (in same domains) that are highly interactive during the treatment. Gene Ontology (GO) enrichment analysis allowed us to identify biological process changed during nitrogen starvation. Based on the above analyses, we examined the local Gene Regulatory Network (GRN) and identified a number of transcription factors. After testing, one of them is a high hierarchically ranked transcription factor that affects root growth under nitrogen starvation. It is very tedious and time-consuming to analyze gene expression data. To avoid doing analysis manually, we attempt to automate a computational pipeline that now can be used for identification of DEGs and protein domain analysis in a single run. It is implemented in scripts of Perl and R.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Integrating evidence from different imaging modalities is important to overcome specific limitations of any given imaging method, such as insensitivity of the EEG to unsynchronized neural events, or the lack of fMRI sensitivity to events of low metabolic demand. Processes that are visible in one modality may be related in a nontrivial way to other processes visible in another modality and insight may only be obtained by integrating both methods through a common analysis. For example, brain activity at rest seems to be at least partly determined by an interaction of cortical rhythms (visible to EEG but not to fMRI) with sub-cortical activity (visible to fMRI, but usually not to EEG without averaging). A combination of EEG and fMRI data during rest may thus be more informative than the sum of two separate analyses in both modalities. Integration is also an important source of converging evidence about specific aspects and general principles of neural functions and their dysfunctions in certain pathologies. This is because not only electrical, but also energetic, biochemical, hemodynamic and metabolic processes characterize neural states and functions, and because brain structure provides crucial constraints upon neural functions. Focusing on multimodal integration of functional data should not distract from the privileged status of the electric field as the primary direct, noninvasive real-time measure of neural transmission. The preceding chapters illustrate how electrical neuroimaging has turned scalp EEG into an imaging modality which directly captures the full temporal dynamics of neural activity in the brain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cloud computing provides a promising solution to the genomics data deluge problem resulting from the advent of next-generation sequencing (NGS) technology. Based on the concepts of “resources-on-demand” and “pay-as-you-go”, scientists with no or limited infrastructure can have access to scalable and cost-effective computational resources. However, the large size of NGS data causes a significant data transfer latency from the client’s site to the cloud, which presents a bottleneck for using cloud computing services. In this paper, we provide a streaming-based scheme to overcome this problem, where the NGS data is processed while being transferred to the cloud. Our scheme targets the wide class of NGS data analysis tasks, where the NGS sequences can be processed independently from one another. We also provide the elastream package that supports the use of this scheme with individual analysis programs or with workflow systems. Experiments presented in this paper show that our solution mitigates the effect of data transfer latency and saves both time and cost of computation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a neuroscientific study of aesthetic judgments on written texts. In an fMRI experiment participants read a number of proverbs without explicitly evaluating them. In a post-scan rating they rated each item for familiarity and beauty. These individual ratings were correlated with the functional data to investigate the neural correlates of implicit aesthetic judgments. We identified clusters in which BOLD activity was correlated with individual post-scan beauty ratings. This indicates that some spontaneous aesthetic evaluation takes place during reading, even if not required by the task. Positive correlations were found in the ventral striatum and in medial prefrontal cortex, likely reflecting the rewarding nature of sentences that are aesthetically pleasing. On the contrary, negative correlations were observed in the classic left frontotemporal reading network. Midline structures and bilateral temporo-parietal regions correlated positively with familiarity, suggesting a shift from the task-network towards the default network with increasing familiarity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This year marks the 20th anniversary of functional near-infrared spectroscopy and imaging (fNIRS/fNIRI). As the vast majority of commercial instruments developed until now are based on continuous wave technology, the aim of this publication is to review the current state of instrumentation and methodology of continuous wave fNIRI. For this purpose we provide an overview of the commercially available instruments and address instrumental aspects such as light sources, detectors and sensor arrangements. Methodological aspects, algorithms to calculate the concentrations of oxy- and deoxyhemoglobin and approaches for data analysis are also reviewed. From the single-location measurements of the early years, instrumentation has progressed to imaging initially in two dimensions (topography) and then three (tomography). The methods of analysis have also changed tremendously, from the simple modified Beer-Lambert law to sophisticated image reconstruction and data analysis methods used today. Due to these advances, fNIRI has become a modality that is widely used in neuroscience research and several manufacturers provide commercial instrumentation. It seems likely that fNIRI will become a clinical tool in the foreseeable future, which will enable diagnosis in single subjects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present study was to investigate the effects of different speech tasks (recitation of prose (PR), alliteration (AR) and hexameter (HR) verses) and a control task (mental arithmetic (MA) with voicing of the result) on endtidal CO2 (ET-CO2), cerebral hemodynamics; i.e. total hemoglobin (tHb) and tissue oxygen saturation (StO2). tHb and StO2 were measured with a frequency domain near infrared spectrophotometer (ISS Inc., USA) and ET-CO2 with a gas analyzer (Nellcor N1000). Measurements were performed in 24 adult volunteers (11 female, 13 male; age range 22 to 64 years) during task performance in a randomized order on 4 different days to avoid potential carry over effects. Statistical analysis was applied to test differences between baseline, 2 recitation and 5 recovery periods. The two brain hemispheres and 4 tasks were tested separately. Data analysis revealed that during the recitation tasks (PR, AR and HR) StO2 decreased statistically significant (p < 0.05) during PR and AR in the right prefrontal cortex (PFC) and during AR and HR in the left PFC. tHb showed a significant decrease during HR in the right PFC and during PR, AR and HR in the left PFC. During the MA task, StO2 increased significantly. A significant decrease in ET-CO2 was found during all 4 tasks with the smallest decrease during the MA task. In conclusion, we hypothesize that the observed changes in tHb and StO2 are mainly caused by an altered breathing during the tasks that led a lowering of the CO2 content in the blood provoked a cerebral CO2 reaction, i.e. a vasoconstriction of blood vessels due to decreased CO2 pressure and thereby decrease in cerebral blood volume. Therefore, breathing changes should be monitored during brain studies involving speech when using functional near infrared spectroscopy (fNIRS) to ensure a correct interpretation of changes in hemodynamics and oxygenation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seizure freedom in patients suffering from pharmacoresistant epilepsies is still not achieved in 20–30% of all cases. Hence, current therapies need to be improved, based on a more complete understanding of ictogenesis. In this respect, the analysis of functional networks derived from intracranial electroencephalographic (iEEG) data has recently become a standard tool. Functional networks however are purely descriptive models and thus are conceptually unable to predict fundamental features of iEEG time-series, e.g., in the context of therapeutical brain stimulation. In this paper we present some first steps towards overcoming the limitations of functional network analysis, by showing that its results are implied by a simple predictive model of time-sliced iEEG time-series. More specifically, we learn distinct graphical models (so called Chow–Liu (CL) trees) as models for the spatial dependencies between iEEG signals. Bayesian inference is then applied to the CL trees, allowing for an analytic derivation/prediction of functional networks, based on thresholding of the absolute value Pearson correlation coefficient (CC) matrix. Using various measures, the thus obtained networks are then compared to those which were derived in the classical way from the empirical CC-matrix. In the high threshold limit we find (a) an excellent agreement between the two networks and (b) key features of periictal networks as they have previously been reported in the literature. Apart from functional networks, both matrices are also compared element-wise, showing that the CL approach leads to a sparse representation, by setting small correlations to values close to zero while preserving the larger ones. Overall, this paper shows the validity of CL-trees as simple, spatially predictive models for periictal iEEG data. Moreover, we suggest straightforward generalizations of the CL-approach for modeling also the temporal features of iEEG signals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantitative real-time polymerase chain reaction (qPCR) is a sensitive gene quantitation method that has been widely used in the biological and biomedical fields. The currently used methods for PCR data analysis, including the threshold cycle (CT) method, linear and non-linear model fitting methods, all require subtracting background fluorescence. However, the removal of background fluorescence is usually inaccurate, and therefore can distort results. Here, we propose a new method, the taking-difference linear regression method, to overcome this limitation. Briefly, for each two consecutive PCR cycles, we subtracted the fluorescence in the former cycle from that in the later cycle, transforming the n cycle raw data into n-1 cycle data. Then linear regression was applied to the natural logarithm of the transformed data. Finally, amplification efficiencies and the initial DNA molecular numbers were calculated for each PCR run. To evaluate this new method, we compared it in terms of accuracy and precision with the original linear regression method with three background corrections, being the mean of cycles 1-3, the mean of cycles 3-7, and the minimum. Three criteria, including threshold identification, max R2, and max slope, were employed to search for target data points. Considering that PCR data are time series data, we also applied linear mixed models. Collectively, when the threshold identification criterion was applied and when the linear mixed model was adopted, the taking-difference linear regression method was superior as it gave an accurate estimation of initial DNA amount and a reasonable estimation of PCR amplification efficiencies. When the criteria of max R2 and max slope were used, the original linear regression method gave an accurate estimation of initial DNA amount. Overall, the taking-difference linear regression method avoids the error in subtracting an unknown background and thus it is theoretically more accurate and reliable. This method is easy to perform and the taking-difference strategy can be extended to all current methods for qPCR data analysis.^