969 resultados para Fuchsian groups, Uniformization, Calabi-Yau manifold, differential equation, mirror symmetry
Resumo:
We analyze a simple model of the heat transfer to and from a small satellite orbiting round a solar system planet. Our approach considers the satellite isothermal, with external heat input from the environment and from internal energy dissipation, and output to the environment as black-body radiation. The resulting nonlinear ordinary differential equation for the satellite’s temperature is analyzed by qualitative, perturbation and numerical methods, which prove that the temperature approaches a periodic pattern (attracting limit cycle). This approach can occur in two ways, according to the values of the parameters: (i) a slow decay towards the limit cycle over a time longer than the period, or (ii) a fast decay towards the limit cycle over a time shorter than the period. In the first case, an exactly soluble average equation is valid. We discuss the consequences of our model for the thermal stability of satellites.
Resumo:
It is presented a mathematical model of the oculomotor plant, based on experimental data in cats. The system that generates, from the neuronal processes at the motoneuron, the control signals to the eye muscles that moves the eye. In contrast with previous models, that base the eye movement related motoneuron behavior on a first order linear differential equation, non-linear effects are described: A dependency on the eye angular position of the model parameters.
Resumo:
We present an approach for evaluating the efficacy of combination antitumor agent schedules that accounts for order and timing of drug administration. Our model-based approach compares in vivo tumor volume data over a time course and offers a quantitative definition for additivity of drug effects, relative to which synergism and antagonism are interpreted. We begin by fitting data from individual mice receiving at most one drug to a differential equation tumor growth/drug effect model and combine individual parameter estimates to obtain population statistics. Using two null hypotheses: (i) combination therapy is consistent with additivity or (ii) combination therapy is equivalent to treating with the more effective single agent alone, we compute predicted tumor growth trajectories and their distribution for combination treated animals. We illustrate this approach by comparing entire observed and expected tumor volume trajectories for a data set in which HER-2/neu-overexpressing MCF-7 human breast cancer xenografts are treated with a humanized, anti-HER-2 monoclonal antibody (rhuMAb HER-2), doxorubicin, or one of five proposed combination therapy schedules.
Resumo:
A fast marching level set method is presented for monotonically advancing fronts, which leads to an extremely fast scheme for solving the Eikonal equation. Level set methods are numerical techniques for computing the position of propagating fronts. They rely on an initial value partial differential equation for a propagating level set function and use techniques borrowed from hyperbolic conservation laws. Topological changes, corner and cusp development, and accurate determination of geometric properties such as curvature and normal direction are naturally obtained in this setting. This paper describes a particular case of such methods for interfaces whose speed depends only on local position. The technique works by coupling work on entropy conditions for interface motion, the theory of viscosity solutions for Hamilton-Jacobi equations, and fast adaptive narrow band level set methods. The technique is applicable to a variety of problems, including shape-from-shading problems, lithographic development calculations in microchip manufacturing, and arrival time problems in control theory.
Resumo:
Reatores tubulares de polimerização podem apresentar um perfil de velocidade bastante distorcido. Partindo desta observação, um modelo estocástico baseado no modelo de dispersão axial foi proposto para a representação matemática da fluidodinâmica de um reator tubular para produção de poliestireno. A equação diferencial foi obtida inserindo a aleatoriedade no parâmetro de dispersão, resultando na adição de um termo estocástico ao modelo capaz de simular as oscilações observadas experimentalmente. A equação diferencial estocástica foi discretizada e resolvida pelo método Euler-Maruyama de forma satisfatória. Uma função estimadora foi desenvolvida para a obtenção do parâmetro do termo estocástico e o parâmetro do termo determinístico foi calculado pelo método dos mínimos quadrados. Uma análise de convergência foi conduzida para determinar o número de elementos da discretização e o modelo foi validado através da comparação de trajetórias e de intervalos de confiança computacionais com dados experimentais. O resultado obtido foi satisfatório, o que auxilia na compreensão do comportamento fluidodinâmico complexo do reator estudado.
Resumo:
In this work we prensent an analysis of non-slanted reflection gratings by using exact solution of the second order differential equation derived from Maxwell equations, in terms of Mathieu functions. The results obtained by using this method will be compared to those obtained by using the well known Kogelnik's Coupled Wave Theory which predicts with great accuracy the response of the efficieny of the zero and first order for volume phase gratings, for both reflection and transmission gratings.
Resumo:
Partial differential equation (PDE) solvers are commonly employed to study and characterize the parameter space for reaction-diffusion (RD) systems while investigating biological pattern formation. Increasingly, biologists wish to perform such studies with arbitrary surfaces representing ‘real’ 3D geometries for better insights. In this paper, we present a highly optimized CUDA-based solver for RD equations on triangulated meshes in 3D. We demonstrate our solver using a chemotactic model that can be used to study snakeskin pigmentation, for example. We employ a finite element based approach to perform explicit Euler time integrations. We compare our approach to a naive GPU implementation and provide an in-depth performance analysis, demonstrating the significant speedup afforded by our optimizations. The optimization strategies that we exploit could be generalized to other mesh based processing applications with PDE simulations.
Resumo:
Applications of the axisymmetric Boussinesq equation to groundwater hydrology and reservoir engineering have long been recognised. An archetypal example is invasion by drilling fluid into a permeable bed where there is initially no such fluid present, a circumstance of some importance in the oil industry. It is well known that the governing Boussinesq model can be reduced to a nonlinear ordinary differential equation using a similarity variable, a transformation that is valid for a certain time-dependent flux at the origin. Here, a new analytical approximation is obtained for this case. The new solution,, which has a simple form, is demonstrated to be highly accurate. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
In the Majoritarian Parliamentary System, the government has a constitutional right to call an early election. This right provides the government a control to achieve its objective to remain in power for as long as possible. We model the early election problem mathematically using opinion polls data as a stochastic process to proxy the government's probability of re-election. These data measure the difference in popularity between the government and the opposition. We fit a mean reverting Stochastic Differential Equation to describe the behaviour of the process and consider the possibility for the government to use other control tools, which are termed 'boosts' to induce shocks to the opinion polls by making timely policy announcements or economic actions. These actions improve the government's popularity and have some impact upon the early-election exercise boundary. © Austral. Mathematical Soc. 2005.
Resumo:
In this paper, we consider dynamic programming for the election timing in the majoritarian parliamentary system such as in Australia, where the government has a constitutional right to call an early election. This right can give the government an advantage to remain in power for as long as possible by calling an election, when its popularity is high. On the other hand, the opposition's natural objective is to gain power, and it will apply controls termed as "boosts" to reduce the chance of the government being re-elected by introducing policy and economic responses. In this paper, we explore equilibrium solutions to the government, and the opposition strategies in a political game using stochastic dynamic programming. Results are given in terms of the expected remaining life in power, call and boost probabilities at each time at any level of popularity.
Resumo:
Bistability arises within a wide range of biological systems from the A phage switch in bacteria to cellular signal transduction pathways in mammalian cells. Changes in regulatory mechanisms may result in genetic switching in a bistable system. Recently, more and more experimental evidence in the form of bimodal population distributions indicates that noise plays a very important role in the switching of bistable systems. Although deterministic models have been used for studying the existence of bistability properties under various system conditions, these models cannot realize cell-to-cell fluctuations in genetic switching. However, there is a lag in the development of stochastic models for studying the impact of noise in bistable systems because of the lack of detailed knowledge of biochemical reactions, kinetic rates, and molecular numbers. in this work, we develop a previously undescribed general technique for developing quantitative stochastic models for large-scale genetic regulatory networks by introducing Poisson random variables into deterministic models described by ordinary differential equations. Two stochastic models have been proposed for the genetic toggle switch interfaced with either the SOS signaling pathway or a quorum-sensing signaling pathway, and we have successfully realized experimental results showing bimodal population distributions. Because the introduced stochastic models are based on widely used ordinary differential equation models, the success of this work suggests that this approach is a very promising one for studying noise in large-scale genetic regulatory networks.
Resumo:
The developments of models in Earth Sciences, e.g. for earthquake prediction and for the simulation of mantel convection, are fare from being finalized. Therefore there is a need for a modelling environment that allows scientist to implement and test new models in an easy but flexible way. After been verified, the models should be easy to apply within its scope, typically by setting input parameters through a GUI or web services. It should be possible to link certain parameters to external data sources, such as databases and other simulation codes. Moreover, as typically large-scale meshes have to be used to achieve appropriate resolutions, the computational efficiency of the underlying numerical methods is important. Conceptional this leads to a software system with three major layers: the application layer, the mathematical layer, and the numerical algorithm layer. The latter is implemented as a C/C++ library to solve a basic, computational intensive linear problem, such as a linear partial differential equation. The mathematical layer allows the model developer to define his model and to implement high level solution algorithms (e.g. Newton-Raphson scheme, Crank-Nicholson scheme) or choose these algorithms form an algorithm library. The kernels of the model are generic, typically linear, solvers provided through the numerical algorithm layer. Finally, to provide an easy-to-use application environment, a web interface is (semi-automatically) built to edit the XML input file for the modelling code. In the talk, we will discuss the advantages and disadvantages of this concept in more details. We will also present the modelling environment escript which is a prototype implementation toward such a software system in Python (see www.python.org). Key components of escript are the Data class and the PDE class. Objects of the Data class allow generating, holding, accessing, and manipulating data, in such a way that the actual, in the particular context best, representation is transparent to the user. They are also the key to establish connections with external data sources. PDE class objects are describing (linear) partial differential equation objects to be solved by a numerical library. The current implementation of escript has been linked to the finite element code Finley to solve general linear partial differential equations. We will give a few simple examples which will illustrate the usage escript. Moreover, we show the usage of escript together with Finley for the modelling of interacting fault systems and for the simulation of mantel convection.
Resumo:
We overview our recent developments in the theory of dispersion-managed (DM) solitons within the context of optical applications. First, we present a class of localized solutions with a period multiple to that of the standard DM soliton in the nonlinear Schrödinger equation with periodic variations of the dispersion. In the framework of a reduced ordinary differential equation-based model, we discuss the key features of these structures, such as a smaller energy compared to traditional DM solitons with the same temporal width. Next, we present new results on dissipative DM solitons, which occur in the context of mode-locked lasers. By means of numerical simulations and a reduced variational model of the complex Ginzburg-Landau equation, we analyze the influence of the different dissipative processes that take place in a laser.
Resumo:
Self-similar optical pulses (or “similaritons”) of parabolic intensity profile can be found as asymptotic solutions of the nonlinear Schr¨odinger equation in a gain medium such as a fiber amplifier or laser resonator. These solutions represent a wide-ranging significance example of dissipative nonlinear structures in optics. Here, we address some issues related to the formation and evolution of parabolic pulses in a fiber gain medium by means of semi-analytic approaches. In particular, the effect of the third-order dispersion on the structure of the asymptotic solution is examined. Our analysis is based on the resolution of ordinary differential equations, which enable us to describe the main properties of the pulse propagation and structural characteristics observable through direct numerical simulations of the basic partial differential equation model with sufficient accuracy.
Resumo:
Self-similar optical pulses (or “similaritons”) of parabolic intensity profile can be found as asymptotic solutions of the nonlinear Schr¨odinger equation in a gain medium such as a fiber amplifier or laser resonator. These solutions represent a wide-ranging significance example of dissipative nonlinear structures in optics. Here, we address some issues related to the formation and evolution of parabolic pulses in a fiber gain medium by means of semi-analytic approaches. In particular, the effect of the third-order dispersion on the structure of the asymptotic solution is examined. Our analysis is based on the resolution of ordinary differential equations, which enable us to describe the main properties of the pulse propagation and structural characteristics observable through direct numerical simulations of the basic partial differential equation model with sufficient accuracy.