857 resultados para Freshwater animals.
Resumo:
Aquest treball s'enquadra en l'àmbit del que s'anomena bioètica animal i es desenvolupa al voltant de la consideració moral dels animals no humans a partir d'un tractament interdisciplinari que implica l'encontre de disciplines tan diverses com filosofia, història, psicologia o estudis de gènere, entre d'altres.
Resumo:
The persistence of sexual reproduction in the face of competition from asexual invaders is more likely if asexual lineages are produced infrequently or have low fitness. The generation rate and success of new asexual lineages will be influenced by the proximate mechanisms underlying transitions to asexuality. As such, characterization of these mechanisms can help explain the distribution of reproductive modes among natural populations. Here, we synthesize the literature addressing proximate causes of transitions from sexual to asexual reproduction in plants and animals. In cyclical and facultatively asexual taxa, individual mutations can cause obligate asexuality. The evolution of asexuality in obligately sexual groups is more complex, requiring the simultaneous acquisition of two traits generally controlled by different genetic factors: unreduced gamete formation and spontaneous development of unfertilized gametes. At least three 'pre-adaptations' could favour transitions to obligate asexuality in obligate sexuals. First, linkage among loci affecting separate key components of asexuality facilitates its spread, with evidence for these linkage blocks in plants. Second, asexuality should evolve more readily in haplodiploids; support for this hypothesis comes from two examples where a single locus causes transitions to asexuality. Third, standing genetic variation for the production of unreduced gametes could facilitate transitions to asexuality, but whether the ability to produce unreduced gametes contributes to the evolution of obligate asexuality remains unclear. We close by reviewing the associations between asexuality, hybridization and polyploidy, and argue that current data suggest that hybridization is more likely to play a causal role in transitions to asexuality than polyploidy.
Resumo:
Several internally fertilizing hermaphroditic animals can only perform one sexual role at a time. In such species, two individuals that engage in a copulation may have different interests in acting as male or female. A gender choice must be made which, if both individuals have the same preference, may give rise to a severe sexual conflict. Here we tested the hypothesis that gender choice could be influenced by mating history, using the freshwater snail, Physa acuta. We recorded the copulatory behaviour of 240 pairs composed of a focal individual and a partner, each either short- or long-isolated. We found that the time to the first copulation was unaffected by isolation status, suggesting that first contacts in this species are random processes. In contrast, the duration of copulations and the frequency of rejection behaviours suggested that individual gender preference switches from male biased to female biased as isolation increases. In addition, snails rejected copulations more frequently when presented to a partner with the same isolation status. Reciprocity, measured as the rate of gender swapping between the first and second copulations, was high irrespective of gender status. We suggest possible evolutionary causes for this gender preference switch and discuss its potential importance in natural population as well as its consequences for the maintenance of hermaphroditism
Resumo:
Objective: Although 24-hour arterial blood pressure can be monitored in a free-moving animal using pressure telemetric transmitter mostly from Data Science International (DSI), accurate monitoring of 24-hour mouse left ventricular pressure (LVP) is not available because of its insufficient frequency response to a high frequency signal such as the maximum derivative of mouse LVP (LVdP/dtmax and LVdP/dtmin). The aim of the study was to develop a tiny implantable flow-through LVP telemetric transmitter for small rodent animals, which can be potentially adapted for human 24 hour BP and LVP accurate monitoring. Design and Method: The mouse LVP telemetric transmitter (Diameter: _12 mm, _0.4 g) was assembled by a pressure sensor, a passive RF telemetry chip, and to a 1.2F Polyurethane (PU) catheter tip. The device was developed in two configurations and compared with existing DSI system: (a) prototype-I: a new flow-through pressure sensor with wire link and (b) prototype-II: prototype-I plus a telemetry chip and its receiver. All the devices were applied in C57BL/6J mice. Data are mean_SEM. Results: A high frequency response (>100 Hz) PU heparin saline-filled catheter was inserted into mouse left ventricle via right carotid artery and implanted, LV systolic pressure (LVSP), LVdP/dtmax, and LVdP/dtmin were recorded on day2, 3, 4, 5, and 7 in conscious mice. The hemodynamic values were consistent and comparable (139_4 mmHg, 16634_319, - 12283_184 mmHg/s, n¼5) to one recorded by a validated Pebax03 catheter (138_2mmHg, 16045_443 and -12112_357 mmHg/s, n¼9). Similar LV hemodynamic values were obtained with Prototype-I. The same LVP waveforms were synchronically recorded by Notocord wire and Senimed wireless software through prototype-II in anesthetized mice. Conclusion: An implantable flow-through LVP transmitter (prototype-I) is generated for LVP accurate assessment in conscious mice. The prototype-II needs a further improvement on data transmission bandwidth and signal coupling distance to its receiver for accurate monitoring of LVP in a freemoving mouse.
Resumo:
Combining nuclear (nuDNA) and mitochondrial DNA (mtDNA) markers has improved the power of molecular data to test phylogenetic and phylogeographic hypotheses and has highlighted the limitations of studies using only mtDNA markers. In fact, in the past decade, many conflicting geographic patterns between mitochondrial and nuclear genetic markers have been identified (i.e. mito-nuclear discordance). Our goals in this synthesis are to: (i) review known cases of mito-nuclear discordance in animal systems, (ii) to summarize the biogeographic patterns in each instance and (iii) to identify common drivers of discordance in various groups. In total, we identified 126 cases in animal systems with strong evidence of discordance between the biogeographic patterns obtained from mitochondrial DNA and those observed in the nuclear genome. In most cases, these patterns are attributed to adaptive introgression of mtDNA, demographic disparities and sex-biased asymmetries, with some studies also implicating hybrid zone movement, human introductions and Wolbachia infection in insects. We also discuss situations where divergent mtDNA clades seem to have arisen in the absence of geographic isolation. For those cases where foreign mtDNA haplotypes are found deep within the range of a second taxon, data suggest that those mtDNA haplotypes are more likely to be at a high frequency and are commonly driven by sex-biased asymmetries and/or adaptive introgression. In addition, we discuss the problems with inferring the processes causing discordance from biogeographic patterns that are common in many studies. In many cases, authors presented more than one explanation for discordant patterns in a given system, which indicates that likely more data are required. Ideally, to resolve this issue, we see important future work shifting focus from documenting the prevalence of mito-nuclear discordance towards testing hypotheses regarding the drivers of discordance. Indeed, there is great potential for certain cases of mitochondrial introgression to become important natural systems within which to test the effect of different mitochondrial genotypes on whole-animal phenotypes.
Resumo:
Larvae of Oukuriella Epler, 1986 (Diptera, Chironomidae) inside freshwater sponges are reported for the first time in Brazil.
Resumo:
Abstract: Microbial mats very efficiently cycle elements, such as C, 0, N, S and H, which makes them key players of redox processes at the biosphere-lithosphere interface. They are characterized by high metabolic activities and high turnover rates (production and consumption) of biomass, which mainly consists of cell material and of extracellular organic matter (EOM). The EOM forms a matrix, embedding the microbial cells and fulfilling various functions within the microbial mat, including: mat attachment to surfaces; creation of micro-domains within the mat; physical stabilization under hy- drodynamic stress and the protection of the cells in multiple other stress conditions. EOM mainly consists of polysaccharides, amino acids, and a variety of chemical func-tional groups {e.g., -C00H, - SH -OH). These groups strongly bind cations such as Ca2+ and Mg2+ and thus exert a strong control on carbonate mineral formation within the microbial mat. A feedback mechanism between community metabolisms, their prod¬ucts, and the surrounding physicochemical microenvironment thus influences the de¬gree of carbonate saturation favoring either carbonate precipitation or dissolution. We investigated the driving forces and mechanisms of microbialite formation in the Sari ne River, FR, Switzerland, the hypersaline lake, Big Pond, Bahamas and in labo¬ratory experiments. The two fundamentally different natural systems allowed us to compare the geochemical conditions and microbial metabolisms, necessary for car¬bonate formation in microbial mats. Although carbonates are oversaturated in both environments, precipitation does not occur on physicochemical substrates (i.e. out¬side the microbial mats). In the Sarine a high crystal nucleation threshold exceeds the carbonate saturation, despite the high carbonate alkalinity in the water column. Cyanobacterial photosynthesis strongly locally enhances the carbonate alkalinity, whereas the EOM attract and immobilize calcium, which increases the saturation state and finally leads to carbonate precipitation within the EOM (in this case the cyanobacterial sheath) as nucleation template. In Big Pond, the presence of calcium- chelating anions (i.e. sulfate) and EOM, as well as the presence of magnesium, lowers the calcium activity in the water column and mat, and thus inhibits carbonate pre¬cipitation. Coupled with other heterotrophic metabolisms, sulfate reduction uses the EOM as carbon source, degrading it. The resulting EOM consumption creates alkalin¬ity, releases calcium and consumes sulfate in mat-micro domains, which leads to the formation of carbonate layers at the top of the microbial mat. Résumé: Interface biosphère/lithosphère: médiation microbienne de la précipitation de CaC03 dans des environnements en eaux douces et hypersalines Les tapis microbiens engendrent une circulation très efficace des éléments, tels que C, 0, N, S et H, ce qui en fait des acteurs clé pour les processus d'oxydoréduction à l'inter¬face biosphère-lithosphère. Ils sont caractérisés par des taux élevés d'activité méta¬bolique, ainsi que par la production et la consommation de biomasse, principalement constituée de cellules microbiennes et de matière organique extracellulaire (MOE). Dans un tapis microbien, les cellules microbiennes sont enveloppées par une matrice de MOE qui a différentes fonctions dont l'attachement du tapis aux surfaces, la créa¬tion de micro-domaines dans le tapis, la stabilisation physique en situation de stress hydrodynamique, et la protection des cellules dans de multiples autres conditions de stress. La MOE se compose principalement de polysaccharides, d'acides aminés, et d'une variété de groupes fonctionnels chimiques (par exemple, COOH, -SH et -OH). Ces groupes se lient fortement aux cations, tels que Ca2+ et Mg2+, et exercent ainsi un contrôle fort sur la formation de CaC03 dans le tapis microbien. Un mécanisme de rétroaction, entre les métabolismes de la communauté microbienne, leurs produits, et le microenvironnement physico-chimique, influence le degré de saturation de car¬bonate, favorisant soit leur précipitation, soit leur dissolution. Nous avons étudié le moteur et les mécanismes de minéralisation dans des tapis de la Sarine, FR, Suisse et du lac hypersalin, Big Pond, aux Bahamas, ainsi que durant des expériences en laboratoire. Les deux systèmes naturels, fondamentalement dif¬férents, nous ont permis de comparer les conditions géochimiques et les métabolis¬mes nécessaires à la formation des carbonates dans des tapis microbiens. Bien que les carbonates soient sursaturés dans les deux environnements, la précipitation ne se produit pas sur des substrats physico-chimiques (en dehors du tapis microbien). Dans la Sarine, malgré un taux d'alcalinité élevé, les valeurs de seuil pour la nucléa- tion de carbonates sont plus hautes que la saturation du carbonate. La photosynthèse cyanobactérienne augmente localement l'alcalinité, alors que la MOE attire et immo¬bilise le calcium, ce qui augmente l'état de saturation et conduit finalement à la pré¬cipitation des carbonates, en utilisant la MOE comme substrat de nucléation. À Big Pond, la présence de chélateurs de calcium, notamment les anions (p.ex. le sulfate) et la MOE, ainsi que la présence de magnésium, réduit l'activité du calcium et inhibe en conséquence la précipitation des carbonates. Couplée avec d'autres métabolismes hétérotrophes, la réduction des sulfates utilise la MOE comme source de carbone, en la dégradant. Cette consommation de MOE crée l'alcalinité, consomme des sulfates et libère du calcium dans des micro-domaines, conduisant à la formation de couches de carbonates dans le haut du tapis microbien.
Resumo:
The first record of the European catfish (Silurus glanis L. 1758) introduced to the Llobregat river basin (NE Spain) is reported. We captured one individual of this silurid fish species (of a total of 541 fish) in La Baells reservoir on 30 August 2006. Given the low catchability of this fish species, the popularity among some anglers, and old rumours on this introduction, we hypothesize that this species has been present in the reservoir since a few years ago, despite we did not capture it in two previous surveys. The illegal introduction of this and other exotic species to other Iberian river basins should be prevented by the Spanish administration
Resumo:
Abnormalities in hippocampal structure and function have been reported in a number of human neuropathological and neurodevelopmental disorders, including Alzheimer's disease, autism spectrum disorders, Down syndrome, epilepsy, and schizophrenia. Given the complexity of these disorders, animal studies are invaluable and remain to date irreplaceable, providing fundamental knowledge regarding the basic mechanisms underlying normal and pathological human brain structure and function. However, there is a prominent ill-conceived view in current research that scientists should be restricted to using animal models of human diseases that can lead to results applicable to humans within a few years. Although there is no doubt that translational studies of this kind are important and necessary, limiting animal studies to applicable questions is counterproductive and will ultimately lead to a lack of knowledge and an inability to address human health problems. Here, we discuss findings regarding the normal postnatal development of the monkey hippocampal formation, which provide an essential framework to consider the etiologies of different neuropathological disorders affecting human hippocampal structure and function. We focus on studies of gene expression in distinct hippocampal regions that shed light on some basic mechanisms that might contribute to the etiology of schizophrenia. We argue that researchers, as well as clinicians, should not consider the use of animals in research only as 'animal models' of human diseases, as they will continue to need and benefit from a better understanding of the normal structure and functions of the hippocampus in 'model animals'.
Resumo:
Genes of interest can be targeted specifically to respiratory epithelial cells in intact animals with high efficiency by exploiting the receptor-mediated endocytosis of the polymeric immunoglobulin receptor. A DNA carrier, consisting of the Fab portion of polyclonal antibodies raised against rat secretory component covalently linked to poly-L-lysine, was used to introduce plasmids containing different reporter genes into airway epithelial cells in vivo. We observed significant levels of luciferase enzyme activity in protein extracts from the liver and lung, achieving maximum values of 13,795 +/- 4,431 and 346,954 +/- 199,120 integrated light units (ILU) per milligram of protein extract, respectively. No luciferase activity was detected in spleen or heart, which do not express the receptor. Transfections using complexes consisting of an irrelevant plasmid (pCMV lacZ) bound to the bona fide carrier or the expression plasmid (pGEMluc) bound to a carrier based on an irrelevant Fab fragment resulted in background levels of luciferase activity in all tissues examined. Thus, only tissues that contain cells bearing the polymeric immunoglobulin receptor are transfected, and transfection cannot be attributed to the nonspecific uptake of an irrelevant carrier-DNA complex. Specific mRNA from the luciferase gene was also detected in the lungs of transfected animals. To determine which cells in the lungs are transfected by this method, DNA complexes were prepared containing expression plasmids with genes encoding the bacterial beta-galactosidase or the human interleukin 2 receptor. Expression of these genes was localized to the surface epithelium of the airways and the submucosal glands, and not the bronchioles and alveoli. Receptor-mediated endocytosis can be used to introduce functional genes into the respiratory epithelium of rats, and may be a useful technique for gene therapy targeting the lung.
Resumo:
Palaeobotany applied to freshwater plants is an emerging field of palaeontology. Hydrophytic plants reveal evolutionary trends of their own, clearly distinct from those of the terrestrial and marine flora. During the Precambrian, two groups stand out in the fossil record of freshwater plants: the Cyanobacteria (stromatolites) in benthic environments and the prasinophytes (leiosphaeridian acritarchs) in transitional planktonic environments. During the Palaeozoic, green algae (Chlorococcales, Zygnematales, charophytes and some extinct groups) radiated and developed the widest range of morphostructural patterns known for these groups. Between the Permian and Early Cretaceous, charophytes dominated macrophytic associations, with the consequence that over tens of millions of years, freshwater flora bypassed the dominance of vascular plants on land. During the Early Cretaceous, global extension of the freshwater environments is associated with diversification of the flora, including new charophyte families and the appearance of aquatic angiosperms and ferns for the first time. Mesozoic planktonic assemblages retained their ancestral composition that was dominated by coenobial Chlorococcales, until the appearance of freshwater dinoflagellates in the Early Cretaceous. In the Late Cretaceous, freshwater angiosperms dominated almost all macrophytic communities worldwide. The Tertiary was characterised by the diversification of additional angiosperm and aquatic fern lineages, which resulted in the first differentiation of aquatic plant biogeoprovinces. Phytoplankton also diversified during the Eocene with the development of freshwater diatoms and chrysophytes. Diatoms, which were exclusively marine during tens of millions of years, were dominant over the Chlorococcales during Neogene and in later assemblages. During the Quaternary, aquatic plant communities suffered from the effects of eutrophication, paludification and acidification, which were the result of the combined impact of glaciation and anthropogenic disturbance.