920 resultados para Frequency response
Resumo:
The response of linear, viscous damped systems to excitations having time-varying frequency is the subject of exact and approximate analyses, which are supplemented by an analog computer study of single degree of freedom system response to excitations having frequencies depending linearly and exponentially on time.
The technique of small perturbations and the methods of stationary phase and saddle-point integration, as well as a novel bounding procedure, are utilized to derive approximate expressions characterizing the system response envelope—particularly near resonances—for the general time-varying excitation frequency.
Descriptive measurements of system resonant behavior recorded during the course of the analog study—maximum response, excitation frequency at which maximum response occurs, and the width of the response peak at the half-power level—are investigated to determine dependence upon natural frequency, damping, and the functional form of the excitation frequency.
The laboratory problem of determining the properties of a physical system from records of its response to excitations of this class is considered, and the transient phenomenon known as “ringing” is treated briefly.
It is shown that system resonant behavior, as portrayed by the above measurements and expressions, is relatively insensitive to the specifics of the excitation frequency-time relation and may be described to good order in terms of parameters combining system properties with the time derivative of excitation frequency evaluated at resonance.
One of these parameters is shown useful for predicting whether or not a given excitation having a time-varying frequency will produce strong or subtle changes in the response envelope of a given system relative to the steady-state response envelope. The parameter is shown, additionally, to be useful for predicting whether or not a particular response record will exhibit the “ringing” phenomenon.
Resumo:
A novel silicon-on-insulator thermo-optic variable optical attenuator with isolated grooves based on a multimode interference coupler principle is fabricated by the inductive coupled plasma etching technology. The maximum fibre-to-fibre insertion loss is lower than 2.2 dB, the dynamic attenuation range is from 0 to 30 dB in the wavelength range 1500-1600 nm, and the maximum power consumption is only 140 mW. The response frequency of the fabricated variable optical attenuator is about 30 kHz. Compared to the variable optical attenuator without isolated grooves, the maximum power consumption decreases more than 220 mW, and the response frequency rises are more than 20 kHz.
Resumo:
A thermo-optic variable optical attenuator based on a multimode interference coupler principle is fabricated. The propagation loss of the fabricated device is 1.6 to 3.8 dB at the wavelength range 1510 to 1610 nm, which is very near the calculated value (1.2 dB) by the finite difference beam propagation method. The maximum power consumption is 363 mW and the dynamic attenuation range is 0 to 26 dB. The response frequency of the fabricated attenuator is about 10 kHz. (C) 2003 Society of Photo-Optical Instrumentation Engineers.
Resumo:
We investigated the sensitivity of low-frequency electrical measurements to microbe-induced metal sulfide precipitation. Three identical sand-packed monitoring columns were used; a geochemical column, an electrical column and a control column. In the first experiment, continuous upward flow of nutrients and metals in solution was established in each column. Cells of Desulfovibrio vulgaris (D. vulgaris) were injected into the center of the geochemical and electrical columns. Geochemical sampling and post-experiment destructive analysis showed that microbial induced sulfate reduction led to metal precipitation on bacteria cells, forming motile biominerals. Precipitation initially occurred in the injection zone, followed by chemotactic migration of D. vulgaris and ultimate accumulation around the nutrient source at the column base. Results from this experiment conducted with metals show (1) polarization anomalies, up to 14 mrad, develop at the bacteria injection and final accumulation areas, (2) the onset of polarization increase occurs concurrently with the onset of lactate consumption, (3) polarization profiles are similar to calculated profiles of the rate of lactate consumption, and (4) temporal changes in polarization and conduction correlate with a geometrical rearrangement of metal-coated bacterial cells. In a second experiment, the same biogeochemical conditions were established except that no metals were added to the flow solution. Polarization anomalies were absent when the experiment was replicated without metals in solution. We therefore attribute the polarization increase observed in the first experiment to a metal-fluid interfacial mechanism that develops as metal sulfides precipitate onto microbial cells and form biominerals. Temporal changes in polarization and conductivity reflect changes in (1) the amount of metal-fluid interfacial area, and (2) the amount of electronic conduction resulting from microbial growth, chemotactic movement and final coagulation. This polarization is correlated with the rate of microbial activity inferred from the lactate concentration gradient, probably via a common total metal surface area effect.
Resumo:
Considerable controversy still exists as to whether electric and magnetic fields (MF) at extremely low frequencies are genotoxic to humans. The aim of this study was to test the ability of alternating magnetic fields to induce DNA and chromosomal damage in primary human fibroblasts. Single- and double-strand breaks were quantified using the alkaline comet assay and the gammaH2AX-foci assay, respectively. Chromosomal damage was assayed for unstable aberrations, sister chromatid exchange and micronuclei. Cells were exposed to switching fields - 5min on, 10min off - for 15h over the range 50-1000microT. Exposure to ionizing radiation was used as a positive-effect calibration. In this study two separate MF exposure systems were used. One was based on a custom-built solenoid coil system and the other on a commercial system almost identical to that used in previous studies by the EU REFLEX programme. With neither system could DNA damage or chromosomal damage be detected as a result of exposure of fibroblasts to switching MF. The sensitive gammaH2AX assay could also not detect significant DNA damage in the MF-exposed fibroblasts, although the minimum threshold for this assay was equivalent to an X-ray dose of 0.025Gy. Therefore, with comparable MF parameters employed, this study could not confirm previous studies reporting significant effects for both the alkaline and neutral comet assays and chromosomal aberration induction.
Resumo:
The use of high-impedance surfaces (HISs) to increase the frequency-scanning sensitivity of hollow leaky-wave antennas (LWAs) is presented. The LWA consists of a hollow rectangular waveguide with one of its narrow walls replaced by a partially reflective surface, and it is loaded with a metallodielectric HIS to increase its beam-scanning response. Theoretical results based on a simple transverse equivalent network illustrate the physical mechanism responsible for the improvement, and they are verified by experiments on a prototype working in the 11-16 GHz band.
Resumo:
Research findings suggest that switching between competing response sets can be resource demanding. The current study focused on concurrent health-relevant physiological effects of task switching by assessing cardiovascular response at varying levels of switch frequency. The participants performed a response-switching task at three different levels of response set switching frequency (low, medium and high) while measurements of blood pressure and heart rate were taken. One group was exposed to response-switching frequency conditions in the order low → medium → high, while the other group was exposed to the same task conditions in the reverse order (i.e. high → medium → low). The results showed that the participants in the low → medium → high switch frequency group recovered faster from initially heightened systolic blood pressure when compared with participants in the high → medium → low group. It is concluded that the results point to a physiological "carry over" effect associated with beginning a task at rapid response switching frequency levels, and suggest the importance of habituation to task demands as a means of offsetting potentially unhealthy levels of reactivity. Implications for modern work environments are discussed.
Resumo:
The electric dipole response of neutron-rich nickel isotopes has been investigated using the LAND setup at GSI in Darmstadt (Germany). Relativistic secondary beams of 56−57Ni and 67−72Ni at approximately 500 AMeV have been generated using projectile fragmentation of stable ions on a 4 g/cm2 Be target and subsequent separation in the magnetic dipole fields of the FRagment Separator (FRS). After reaching the LAND setup in Cave C, the radioactive ions were excited electromagnetically in the electric field of a Pb target. The decay products have been measured in inverse kinematics using various detectors. Neutron-rich 67−69Ni isotopes decay by the emission of neutrons, which are detected in the LAND detector. The present analysis concentrates on the (gamma,n) and (gamma,2n) channels in these nuclei, since the proton and three-neutron thresholds are unlikely to be reached considering the virtual photon spectrum for nickel ions at 500 AMeV. A measurement of the stable 58Ni isotope is used as a benchmark to check the accuracy of the present results with previously published data. The measured (gamma,n) and (gamma,np) channels are compared with an inclusive photoneutron measurement by Fultz and coworkers, which are consistent within the respective errors. The measured excitation energy distributions of 67−69Ni contain a large portion of the Giant Dipole Resonance (GDR) strength predicted by the Thomas-Reiche-Kuhn energy-weighted sum rule, as well as a significant amount of low-lying E1 strength, that cannot be attributed to the GDR alone. The GDR distribution parameters are calculated using well-established semi-empirical systematic models, providing the peak energies and widths. The GDR strength is extracted from the chi-square minimization of the model GDR to the measured data of the (gamma,2n) channel, thereby excluding any influence of eventual low-lying strength. The subtraction of the obtained GDR distribution from the total measured E1 strength provides the low-lying E1 strength distribution, which is attributed to the Pygmy Dipole Resonance (PDR). The extraction of the peak energy, width and strength is performed using a Gaussian function. The minimization of trial Gaussian distributions to the data does not converge towards a sharp minimum. Therefore, the results are presented by a chi-square distribution as a function of all three Gaussian parameters. Various predictions of PDR distributions exist, as well as a recent measurement of the 68Ni pygmy dipole-resonance obtained by virtual photon scattering, to which the present pygmy dipole-resonance distribution is also compared.
Resumo:
La determinazione del modulo di Young è fondamentale nello studio della propagazione di fratture prima del rilascio di una valanga e per lo sviluppo di affidabili modelli di stabilità della neve. Il confronto tra simulazioni numeriche del modulo di Young e i valori sperimentali mostra che questi ultimi sono tre ordini di grandezza inferiori a quelli simulati (Reuter et al. 2013). Lo scopo di questo lavoro è stimare il modulo di elasticità studiando la dipendenza dalla frequenza della risposta di diversi tipi di neve a bassa densità, 140-280 kg m-3. Ciò è stato fatto applicando una compressione dinamica uniassiale a -15°C nel range 1-250 Hz utilizzando il Young's modulus device (YMD), prototipo di cycling loading device progettato all'Istituto per lo studio della neve e delle valanghe (SLF). Una risposta viscoelastica della neve è stata identificata a tutte le frequenze considerate, la teoria della viscoelasticità è stata applicata assumendo valida l'ipotesi di risposta lineare della neve. Il valore dello storage modulus, E', a 100 Hz è stato identificato come ragionevolmente rappresentativo del modulo di Young di ciascun campione neve. Il comportamento viscoso è stato valutato considerando la loss tangent e la viscosità ricavata dai modelli di Voigt e Maxwell. Il passaggio da un comportamento più viscoso ad uno più elastico è stato trovato a 40 Hz (~1.1•10-2 s-1). Il maggior contributo alla dissipazione è nel range 1-10 Hz. Infine, le simulazioni numeriche del modulo di Young sono state ottenute nello stesso modo di Reuter et al.. La differenza tra le simulazioni ed i valori sperimentali di E' sono, al massimo, di un fattore 5; invece, in Reuter et al., era di 3 ordini di grandezza. Pertanto, i nostri valori sperimentali e numerici corrispondono meglio, indicando che il metodo qui utilizzato ha portato ad un miglioramento significativo.