974 resultados para Fractions of phosphorus
Resumo:
Purpose: To evaluate the in vitro antioxidant and anti-neuroinflammatory effects of Suaeda asparagoides ethylacetate extract (SAE) in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. Methods: The antioxidative activity of SAE was evaluated by measuring 1, 1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging activity spectrometrometrically. Cell viability was evaluated by 3-(4, 5dimethylthiazol-2-yl)-2, 5- diphenyl-tetrazolium bromide (MTT) assay, while LPS-stimulated BV-2 microglia were used to study the expression and production of inflammatory mediators, including nitric oxide (NO), inducible NO synthase (iNOS) and tumor necrosis alpha (TNF-α). Results: Pretreatment with SAE prior to LPS treatment significantly inhibited excessive production of NO (p < 0.001 at 20, 40, 80 and 100 μg/mL) in a dose-dependent manner, and was associated with down-regulation of expression of inducible nitric oxide synthase (iNOS). SAE also suppressed the LPSinduced increase in TNF-α level (p < 0.01at concentrations of 40 and 80 μg/mL) in BV-2 cells. Furthermore, DPPH-generated free radicals were inhibited by SAE in a concentration-dependent manner. Conclusion: These results indicate that SAE possesses strong anti-oxidant properties, and inhibits excessive production of pro-inflammatory mediators, including NO, iNOS and TNF-α, in LPS-stimulated BV-2 cells
Resumo:
Soil organic matter (SOM) plays a key role in maintaining the productivity of tropical soils, providing energy and substrate for the biological activity and modifying the physical and chemical characteristics that ensure the maintenance of soil quality and the sustainability of ecosystems. This study assessed the medium-term effect (six years) of the application of five organic composts, produced by combining different agro-industrial residues, on accumulation and chemical characteristics of soil organic matter. Treatments were applied in a long-term experiment of organic management of mango (OMM) initiated in 2005 with a randomized block design with four replications. Two external areas, one with conventional mango cultivation (CMM) and the other a fragment of regenerating Caatinga vegetation (RCF), were used as reference areas. Soil samples were collected in the three management systems from the 0.00-0.05, 0.05-0.10, and 0.10-0.20 m layers, and the total organic carbon content and chemical fractions of organic matter were evaluated by determining the C contents of humin and humic and fulvic acids. Organic compost application significantly increased the contents of total C and C in humic substances in the experimental plots, mainly in the surface layer. However, compost 3 (50 % coconut bagasse, 40 % goat manure, 10 % castor bean residues) significantly increased the level of the non-humic fraction, probably due to the higher contents of recalcitrant material in the initial composition. The highest increases from application of the composts were in the humin, followed by the fulvic fraction. Compost application increased the proportion of higher molecular weight components, indicating higher stability of the organic matter.
Resumo:
2015
Resumo:
2016
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In unfertilized, highly weathered tropical soils, phosphorus (P) availability to plants is dependent on the mineralization of organic P (Po) compounds. The objective of this study was to estimate the mineralization of total and labile Po in soil size fractions of > 2.0, 2.0-0.25 and < 0.25 mm under leguminous forest tree species, pasture and "capoeira" (secondary forest) in the 0-10 cm layer of a Red-Yellow Latosol after 90 d of incubation. The type of vegetation cover, soil incubation time and soil size fractions had a significant effect on total P and labile P (Pi and Po) fraction contents. The total average Po content decreased in soil macroaggregates by 25 and 15 % in the > 2.0 and 2.0-0.25 mm fractions, respectively. In contrast, there was an average increase of 90 % of total Po in microaggregates of < 0.25 mm. Labile Po was significantly reduced by incubation in the > 2.0 (-50 %) and < 0.25 mm (-76 %) fractions, but labile Po increased by 35 % in the 2.0-0.25 mm fraction. The Po fraction relative to total extracted P and total labile P within the soil size fractions varied with the vegetation cover and incubation time. Therefore, the distribution of P fractions (Pi and Po) in the soil size fraction revealed the distinctive ability of the cover species to recycle soil P. Consequently, the potential of Po mineralization varied with the size fraction and vegetation cover. Because Po accounted for most of the total labile P, the P availability to plants was closely related to the mineralization of this P fraction.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This data set contains measurements of phosphorus fractions (Hedley fractions) in soil collected 2007 from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Five independent soil samples per plot were taken in a depth of 0-15 cm using a soil corer with an inner diameter of 1 cm. The five samples per plot were combined to one composite sample per plot. A four-step sequential P fractionation (Hedley fractions) was applied. Sequentially, 20 ml NaHCO3 (adjusted to pH 8.5), 30 ml NaOH, and 35 ml HCl were used as extraction solutions for 0.5 g soil. The last step comprised the combustion (550 °C) of the remaining soil to destroy all organic material followed by shaking with 20 ml H2SO4. Organic P concentrations of the respective fractions were calculated as the difference between total dissolved P and inorganic P. Duplicate phosphate concentrations of P fractions in soil were measured photometrically (molybdenum blue-reactive P) with a Continuous Flow Analyzer (Bran&Luebbe, Germany).
Resumo:
ABSTRACT The use of fire to prepare agricultural areas is a technique still used by small farmers in eastern Amazon. This type of management changes the dynamics of soil nutrients, especially phosphorus, which constitutes the most limiting nutrient for crop production in tropical soils. This study was carried out to evaluate changes in phosphorus forms in an Argissolo Amarelo Distrófico (Ultisol) submitted to burning and trituration of secondary forest in eastern Amazon. The evaluated systems were: slash-and-burn of vegetation; slash-and-mulch of vegetation; and secondary vegetation. The labile, moderately labile, moderately recalcitrant, available and total phosphorus fractions were assessed at the soil depths of 0.00-0.05, 0.05-0.10 and 0.10-0.20 m. The results showed a predominance of soluble P in acid (moderately labile P) over other forms in all management systems. The management systems influence the content and distribution of the forms of P, where the slash-and-mulch system presented the prevalence of the labile fraction, and the slash-and-burn system contained less labile forms. The slash-and-mulch system favored the accumulation of labile P and total organic P.
Resumo:
The effects of different forage mixtures on duodenal flow and faecal output of phosphorus (P) were measured in lactating dairy cows in two experiments. The forages comprised grass silage (GS) alone or mixtures of GS and urea-treated whole crop wheat (WCW). Replacement of GS by high levels of WCW resulted in a significant decrease in total P (TP), water-soluble P (WSP) and acid-soluble P (ASP) intakes, but increased phytate P (PP) and acid-insoluble P (AIP) intakes. Duodenal flows of all P fractions were unaffected by dietary treatments. However, the amounts of all fractions flowing to the intestine were much higher than the amounts consumed-with the exception of AIP, which was unchanged, and PP, which was considerably reduced. Diets did not significantly affect faecal outputs of TP, ASP, PP and AIP; however, faecal outputs of WSP were significantly higher on WCW than GS diets. Inclusion of WCW significantly decreased TP and WSP availabilities in the total tract but did not affect PP and AIP availabilities. A new fraction of P, which was not present in the feeds, was found in significant amounts in the intestines and proved to be soluble in dilute acid but insoluble in water. Estimated annual excretions for a herd of 100 cows ranged from 1550 to 1721 kg for total P of which 337-786 kg was WSP. The results suggest that GS based diets deposit more P in the environment. However, the potential to cause P pollution depends not only on the quantity but also on the nature of faecal P and on soil parameters. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Eutrophication is a persistent problem in many fresh water lakes. Delay in lake recovery following reductions in external loading of phosphorus, the limiting nutrient in fresh water ecosystems, is often observed. Models have been created to assist with lake remediation efforts, however, the application of management tools to sediment diagenesis is often neglected due to conceptual and mathematical complexity. SED2K (Chapra et al. 2012) is proposed as a "middle way", offering engineering rigor while being accessible to users. An objective of this research is to further support the development and application SED2K for sediment phosphorus diagenesis and release to the water column of Onondaga Lake. Application of SED2K has been made to eutrophic Lake Alice in Minnesota. The more homogenous sediment characteristics of Lake Alice, compared with the industrially polluted sediment layers of Onondaga Lake, allowed for an invariant rate coefficient to be applied to describe first order decay kinetics of phosphorus. When a similar approach was attempted on Onondaga Lake an invariant rate coefficient failed to simulate the sediment phosphorus profile. Therefore, labile P was accounted for by progressive preservation after burial and a rate coefficient which gradual decreased with depth was applied. In this study, profile sediment samples were chemically extracted into five operationally-defined fractions: CaCO3-P, Fe/Al-P, Biogenic-P, Ca Mineral-P and Residual-P. Chemical fractionation data, from this study, showed that preservation is not the only mechanism by which phosphorus may be maintained in a non-reactive state in the profile. Sorption has been shown to contribute substantially to P burial within the profile. A new kinetic approach involving partitioning of P into process based fractions is applied here. Results from this approach indicate that labile P (Ca Mineral and Organic P) is contributing to internal P loading to Onondaga Lake, through diagenesis and diffusion to the water column, while the sorbed P fraction (Fe/Al-P and CaCO3-P) is remaining consistent. Sediment profile concentrations of labile and total phosphorus at time of deposition were also modeled and compared with current labile and total phosphorus, to quantify the extent to which remaining phosphorus which will continue to contribute to internal P loading and influence the trophic status of Onondaga Lake. Results presented here also allowed for estimation of the depth of the active sediment layer and the attendant response time as well as the sediment burden of labile P and associated efflux.
Resumo:
Propionate, a carbon substrate abundant in many prefermenters, has been shown in several previous studies to be a more favorable substrate than acetate for enhanced biological phosphorus removal (EBPR). The anaerobic metabolism of propionate by polyphosphate accumulating organisms (PAOs) is studied in this paper. A metabolic model is proposed to characterize the anaerobic biochemical transformations of propionate uptake by PAOs. The model is demonstrated to predict very well the experimental data from a PAO culture enriched in a laboratory-scale reactor with propionate as the sole carbon source. Quantitative fluorescence in-situ hybridization (FISH) analysis shows that Candidatus Accumulibacter phosphatis, the only identified PAO to date, constitute 63% of the bacterial population in this culture. Unlike the anaerobic metabolism of acetate by PAOs, which induces mainly poly-beta-hydroxybutyrate (PHB) production, the major fractions of poly-beta-hydroxyalkanoate (PHA) produced with propionate as the carbon source are poly-beta-hydroxyvalerate (PHV) and poly-beta-hydroxy-2-methylvalerate (PH2MV). PHA formation correlates very well with a selective (or nonrandom) condensation of acetyl-CoA and propionyl-CoA molecules. The maximum specific propionate uptake rate by PAOs found in this study is 0.18 C-mol/C-mol-biomass h, which is very similar to the maximum specific acetate uptake rate reported in literature. The energy required for transporting 1 carbon-mole of propionate across the PAO cell membrane is also determined to be similar to the transportation of 1 carbon-mole of acetate. Furthermore, the experimental results suggest that PAOs possess a similar preference toward acetate and propionate uptake on a carbon-mole basis. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Heterotrophic bacteria are important decomposers and transformers of primary production and provide an important link between detritus and the aquatic food web. In seagrass ecosystems, much of seagrass primary production is unavailable through direct grazing and must undergo microbial reworking before seagrass production can enter the aquatic food web. The goal of my dissertation research is to understand better the role heterotrophic bacteria play in carbon cycling in seagrass estuaries. My dissertation research focuses on Florida Bay, a seagrass estuary that has experienced recent changes in carbon source availability, which may have altered ecosystem function. My dissertation research investigates the importance of seagrass, algal and/or cyanobacterial, and allochthonous-derived organic matter to heterotrophic bacteria in Florida Bay and helps establish the carbon base of the estuarine food web. ^ A three tiered approach to the study of heterotrophic bacterial carbon cycling and trophic influences in Florida Bay was used: (1) Spatiotemporal observations of environmental parameters (hydrology, nutrients, extracellular enzymes, and microbial abundance, biomass, and production); (2) Microbial grazing experiments under different levels of top-down and bottom-up influence; and (3) Bulk and compound-specific (bacteria-biomarker fatty acid analysis) stable carbon isotope analysis. ^ In Florida Bay, spatiotemporal patterns in microbial extracellular enzyme (also called ectoenzyme) activities indicate that microorganisms hydrolyzed selectively fractions of the estuarine organic matter pool. The microbial community hydrolyzed organic acids, peptides, and phosphate esters and did not use storage and structural carbohydrates. Organic matter use by heterotrophic bacterioplankton in Florida Bay was co-regulated by bottom-up (resource availability) and top-down (grazer mediated) processes. A bacterial carbon budget based on bacterial, epiphytic, and seagrass production indicates that heterotrophic bacterial carbon cycles are supported primarily through epiphytic production with mixing from seagrass production. Stable carbon isotope analysis of bacteria biomarkers and carbon sources in Florida Bay corroborate the results of the bacterial carbon budget. These results support previous studies of aquatic consumers in Florida Bay, indicating that epiphytic/benthic algal and/or cyanobacterial production with mixing from seagrass-derived organic matter is the carbon base of the seagrass estuarine food web. ^
Resumo:
To reconstruct the cycling of reactive phosphorus (P) in the Bering Sea, a P speciation record covering the last ~ 4 Ma was generated from sediments recovered during Integrated Ocean Drilling Program (IODP) Expedition 323 at Site U1341 (Bowers Ridge). A chemical extraction procedure distinguishing between different operationally defined P fractions provides new insight into reactive P input, burial and diagenetic transformations. Reactive P mass accumulation rates (MARs) are ~ 20-110 µmol/cm2/ka, which is comparable to other open ocean locations but orders of magnitude lower than most upwelling settings. We find that authigenic carbonate fluorapatite (CFA) and opal-bound P are the dominant P fractions at Site U1341. An overall increasing contribution of CFA to total P with sediment depth is consistent with a gradual "sink switching" from more labile P fractions (fish remains, Fe oxides, organic matter) to stable authigenic CFA. However, the positive correlation of CFA with Al content implies that a significant portion of the supposedly reactive CFA is non-reactive "detrital contamination" by eolian and/or riverine CFA. In contrast to CFA, opal-bound P has rarely been studied in marine sediments. We find for the first time that opal-bound P directly correlates with excess silica contents. This P fraction was apparently available to biosiliceous phytoplankton at the time of sediment deposition and is a long-term sink for reactive P in the ocean, despite the likelihood for diagenetic re-mobilisation of this P at depth (indicated by increasing ratios of excess silica to opal-bound P). Average reactive P MARs at Site U1341 increase by ~ 25% if opal-bound P is accounted for, but decrease by ~ 25% if 50% of the extracted CFA fraction (based on the lowest CFA value at Site U1341) is assumed to be detrital. Combining our results with literature data, we present a qualitative perspective of terrestrial CFA and opal-bound P deposition in the modern ocean. Riverine CFA input has mostly been reported from continental shelves and margins draining P-rich lithologies, while eolian CFA input is found across wide ocean regions underlying the Northern Hemispheric "dust belt". Opal-bound P burial is important in the Southern Ocean, North Pacific, and likely in upwelling areas. Shifts in detrital CFA and opal-bound P deposition across ocean basins likely occurred over time, responding to changing weathering patterns, sea level, and biogenic opal deposition.
Resumo:
Leaf fractions of Wilbrandia ebracteata were investigated for anti-ulcerogenic effects in ethanol and indomethacin-induced gastric ulcer assays in mice. Protective anti-ulcer effects were detected only in the ethanol-induced ulcer assay effects after pre-treatment with MeOH extract, MeOH chlorophyll-free, chlorophyll residue, HEX, DCM, aqueous MeOH fraction, ethyl acetate (EtOAc) and aqueous fractions. A potent anti-ulcerogenic effect was determined after pre-treatment of animals with EtOAc fraction, which was fractionated for isolation of active constituents. Seven flavonoids, 3`,4`,5,6,7,8-hexahydroxyflavonol, orientin, isoorientin, vitexin, isovitexin, luteolin, 6-methoxi-luteolin were isolated from the leaves of W. ebracteata (Cucurbitaceae) by chromatographic methods and identified by their spectral data. The data suggest that flavonoids are active anti-ulcerogenic compounds from leaves of W. ebracteata. The ability of scavenging free radicals was evaluated by DPPH reduction assay by TLC of flavonoids isolated.