954 resultados para Formation control


Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the atomic surface properties of differently prepared silicon and germanium (100) surfaces during metal-organic vapour phase epitaxy/chemical vapour deposition (MOVPE/MOCVD), in particular the impact of the MOVPE ambient, and applied reflectance anisotropy/difference spectroscopy (RAS/RDS) in our MOVPE reactor to in-situ watch and control the preparation on the atomic length scale for subsequent III-V-nucleation. The technological interest in the predominant opto-electronic properties of III-V-compounds drives the research for their heteroepitaxial integration on more abundant and cheaper standard substrates such as Si(100) or Ge(100). In these cases, a general task must be accomplished successfully, i.e. the growth of polar materials on non-polar substrates and, beyond that, very specific variations such as the individual interface formation and the atomic step structure, have to be controlled. Above all, the method of choice to grow industrial relevant high-performance device structures is MOVPE, not normally compatible with surface and interface sensitive characterization tools, which are commonly based on ultrahigh vacuum (UHV) ambients. A dedicated sample transfer system from MOVPE environment to UHV enabled us to benchmark the optical in-situ spectra with results from various surfaces science instruments without considering disruptive contaminants. X-ray photoelectron spectroscopy (XPS) provided direct observation of different terminations such as arsenic and phosphorous and verified oxide removal under various specific process parameters. Absorption lines in Fourier-transform infrared (FTIR) spectra were used to identify specific stretch modes of coupled hydrides and the polarization dependence of the anti-symmetric stretch modes distinguished different dimer orientations. Scanning tunnelling microscopy (STM) studied the atomic arrangement of dimers and steps and tip-induced H-desorption proved the saturation of dangling bonds after preparati- n. In-situ RAS was employed to display details transiently such as the presence of H on the surface at lower temperatures (T <; 800°C) and the absence of Si-H bonds at elevated annealing temperature and also surface terminations. Ge buffer growth by the use of GeH4 enables the preparation of smooth surfaces and leads to a more pronounced amplitude of the features in the spectra which indicates improvements of the surface quality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We recover and develop some robotic systems concepts (on the light of present systems tools) that were originated for an intended Mars Rover in the sixties of the last century at the Instrumentation Laboratory of MIT, where one of the authors was involved. The basic concepts came from the specifications for a type of generalized robot inspired in the structure of the vertebrate nervous systems, where the decision system was based in the structure and function of the Reticular Formation (RF). The vertebrate RF is supposed to commit the whole organism to one among various modes of behavior, so taking the decisions about the present overall task. That is, it is a kind of control and command system. In this concepts updating, the basic idea is that the RF comprises a set of computing units such that each computing module receives information only from a reduced part of the overall, little processed sensory inputs. Each computing unit is capable of both general diagnostics about overall input situations and of specialized diagnostics according to the values of a concrete subset of the input lines. Slave systems to this command and control computer, there are the sensors, the representations of external environment, structures for modeling and planning and finally, the effectors acting in the external world.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vicinal Ge(100) is the common substrate for state of the art multi-junction solar cells grown by metal-organic vapor phase epitaxy (MOVPE). While triple junction solar cells based on Ge(100) present efficiencies mayor que 40%, little is known about the microscopic III-V/Ge(100) nucleation and its interface formation. A suitable Ge(100) surface preparation prior to heteroepitaxy is crucial to achieve low defect densities in the III-V epilayers. Formation of single domain surfaces with double layer steps is required to avoid anti-phase domains in the III-V films. The step formation processes in MOVPE environment strongly depends on the major process parameters such as substrate temperature, H2 partial pressure, group V precursors [1], and reactor conditions. Detailed investigation of these processes on the Ge(100) surface by ultrahigh vacuum (UHV) based standard surface science tools are complicated due to the presence of H2 process gas. However, in situ surface characterization by reflection anisotropy spectroscopy (RAS) allowed us to study the MOVPE preparation of Ge(100) surfaces directly in dependence on the relevant process parameters [2, 3, 4]. A contamination free MOVPE to UHV transfer system [5] enabled correlation of the RA spectra to results from UHV-based surface science tools. In this paper, we established the characteristic RA spectra of vicinal Ge(100) surfaces terminated with monohydrides, arsenic and phosphorous. RAS enabled in situ control of oxide removal, H2 interaction and domain formation during MOVPE preparation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Control of linear flow instabilities has been demonstrated to be an effective theoretical flow control methodology, capable of modifying transitional flows on canonical geometries such as the plane channel and the flat-plate boundary layer. Extending the well-developed theoretical flow control techniques to flows over or through complex geometries requires addressing the issue of efficient capturing of the leading members of the global eigenspectrum pertinent to such flows. The present contribution describes state-of-the-art modal global instability analysis methodologies recently developed in our group, based on matrix formation and time-stepping, respectively. The relative performance of these algorithms is assessed on the recovery of BiGlobal and TriGlobal eigenspectra in the spanwise periodic and the cubic lid-driven cavity, respectively; the adjoint eigenspectrum in the latter flow is recovered for the first time. For three-dimensional flows without any homogeneous spatial direction, the time-stepping methodology was found to outperform the matrix-forming approach and permit recovering the leading TriGlobal eigenmodes in an three-dimensional open cavity of aspect ratio L : D : W = 5 : 1 : 1; theoretical flow control of this configuration is underway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Auxin plays an important role in many aspects of plant development including stress responses. Here we briefly summarize how auxin is involved in salt stress, drought (i.e. mostly osmotic stress), waterlogging and nutrient deficiency in Brassica plants. In addition, some mechanisms to control auxin levels and signaling in relation to root formation (under stress) will be reviewed. Molecular studies are mainly described for the model plant Arabidopsis thaliana, but we also like to demonstrate how this knowledge can be transferred to agriculturally important Brassica species, such as Brassica rapa, Brassica napus and Brassica campestris. Moreover, beneficial fungi could play a role in the adaptation response of Brassica roots to abiotic stresses. Therefore, the possible influence of Piriformospora indica will also be covered since the growth promoting response of plants colonized by P. indica is also linked to plant hormones, among them auxin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nrd1 is an essential yeast protein of unknown function that has an RNA recognition motif (RRM) in its carboxyl half and a putative RNA polymerase II-binding domain, the CTD-binding motif, at its amino terminus. Nrd1 mediates a severe reduction in pre-mRNA production from a reporter gene bearing an exogenous sequence element in its intron. The effect of the inserted element is highly sequence-specific and is accompanied by the appearance of 3′-truncated transcripts. We have proposed that Nrd1 binds to the exogenous sequence element in the nascent pre-mRNA during transcription, aided by the CTD-binding motif, and directs 3′-end formation a short distance downstream. Here we show that highly purified Nrd1 carboxyl half binds tightly to the RNA element in vitro with sequence specificity that correlates with the efficiency of cis-element-directed down-regulation in vivo. A large deletion in the CTD-binding motif blocks down-regulation but does not affect the essential function of Nrd1. Furthermore, a nonsense mutant allele that produces truncated Nrd1 protein lacking the RRM has a dominant-negative effect on down-regulation but not on cell growth. Viability of this and several other nonsense alleles of Nrd1 appears to require translational readthrough, which in one case is extremely efficient. Thus the CTD-binding motif of Nrd1 is important for pre-mRNA down-regulation but is not required for the essential function of Nrd1. In contrast, the RNA-binding activity of Nrd1 appears to be required both for down-regulation and for its essential function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phosphorelay signal transduction system activates developmental transcription in sporulation of Bacillus subtilis by phosphorylation of aspartyl residues of the Spo0F and Spo0A response regulators. The phosphorylation level of these response regulators is determined by the opposing activities of protein kinases and protein aspartate phosphatases that interpret positive and negative signals for development in a signal integration circuit. The RapA protein aspartate phosphatase of the phosphorelay is regulated by a peptide that directly inhibits its activity. This peptide is proteolytically processed from an inactive pre-inhibitor protein encoded in the phrA gene. The pre-inhibitor is cleaved by the protein export apparatus to a putative pro-inhibitor that is further processed to the active inhibitor peptide and internalized by the oligopeptide permease. This export–import circuit is postulated to be a mechanism for timing phosphatase activity where the processing enzymes regulate the rate of formation of the active inhibitor. The processing events may, in turn, be controlled by a regulatory hierarchy. Chromosome sequencing has revealed several other phosphatase–prepeptide gene pairs in B. subtilis, suggesting that the use of this mechanism may be widespread in signal transduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Podospora anserina is a filamentous fungus with a limited life span. Life span is controlled by nuclear and extranuclear genetic traits. Herein we report the nature of four alterations in the nuclear gene grisea that lead to an altered morphology, a defect in the formation of female gametangia, and an increased life span. Three sequence changes are located in the 5′ upstream region of the grisea ORF. One mutation is a G → A transition at the 5′ splice site of the single intron of the gene, leading to a RNA splicing defect. This loss-of-function affects the amplification of the first intron of the mitochondrial cytochrome c oxidase subunit I gene (COI) and the specific mitochondrial DNA rearrangements that occur during senescence of wild-type strains. Our results indicate that the nuclear gene grisea is part of a molecular machinery involved in the control of mitochondrial DNA reorganizations. These DNA instabilities accelerate but are not a prerequisite for the aging of P. anserina cultures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The genetic basis of spontaneous melanoma formation in spotted dorsal (Sd) Xiphophorus platyfish–swordtail hybrids has been studied for decades, and is adequately explained by a two-gene inheritance model involving a sex-linked oncogene, Xmrk, and an autosomal tumor suppressor, DIFF. The Xmrk oncogene encodes a receptor tyrosine kinase related to EGFR; the nature of the DIFF tumor suppressor gene is unknown. We analyzed the genetic basis of UV-B-induced melanoma formation in closely related, spotted side platyfish–swordtail hybrids, which carry a different sex-linked pigment pattern locus, Sp. We UV-irradiated spotted side Xiphophorus platyfish–swordtail backcross hybrids to induce melanomas at frequencies 6-fold higher than occur spontaneously in unirradiated control animals. To identify genetic determinants of melanoma susceptibility in this UV-inducible Xiphophorus model, we genotyped individual animals from control and UV-irradiated experimental regimes using allozyme and DNA restriction fragment length polymorphisms and tested for joint segregation of genetic markers with pigmentation phenotype and UV-induced melanoma formation. Joint segregation results show linkage of a CDKN2-like DNA polymorphism with UV-B-induced melanoma formation in these hybrids. The CDKN2-like polymorphism maps to Xiphophorus linkage group V and exhibits recombination fractions with ES1 and MDH2 allozyme markers consistent with previous localization of the DIFF tumor suppressor locus. Our results indicate that the CDKN2-like sequence we have cloned and mapped is a candidate for the DIFF tumor suppressor gene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The CST20 gene of Candida albicans was cloned by functional complementation of a deletion of the STE20 gene in Saccharomyces cerevisiae. CST20 encodes a homolog of the Ste20p/p65PAK family of protein kinases. Colonies of C. albicans cells deleted for CST20 revealed defects in the lateral formation of mycelia on synthetic solid “Spider” media. However, hyphal development was not impaired in some other media. A similar phenotype was caused by deletion of HST7, encoding a functional homolog of the S. cerevisiae Ste7p protein kinase. Overexpression of HST7 partially complemented the deletion of CST20. Cells deleted for CST20 were less virulent in a mouse model for systemic candidiasis. Our results suggest that more than one signaling pathway can trigger hyphal development in C. albicans, one of which has a protein kinase cascade that is analogous to the mating response pathway in S. cerevisiae and might have become adapted to the control of mycelial formation in asexual C. albicans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we extend the study of the genes controlling the formation of domes in the rat mammary cell line LA7 under the influence of DMSO. The role of the rat8 gene has already been demonstrated. We have now studied two additional genes. The first, called 133, is the rat ortholog of the human epithelial membrane protein 3 (EMP3), a member of the peripheral myelin protein 22 (PMP22)/EMP/lens-specific membrane protein 20 (MP20) gene family that encodes for tetratransmembrane proteins; it is expressed in the LA7 line in the absence of DMSO but not in its presence. The second gene is the β subunit of the amiloride-sensitive Na+ channel. Studies with antisense oligonucleotides show that the formation of domes is under the control of all three genes: the expression of rat8 is required for both their formation and their persistence; the expression of the Na+ channel β subunit is required for their formation; and the expression of gene 133 blocks the expression of the Na+ channel genes, thus preventing formation of the domes. The formation of these structures is also accompanied by the expression of α6β1 integrin, followed by that of E-cadherin and cytokeratin 8. It appears, therefore, that dome formation requires the activity of the Na+ channel and the rat8-encoded protein and is under the negative control of gene 133. DMSO induces dome formation by blocking this control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hepatic endothelial fenestrae are dynamic structures that act as a sieving barrier to control the extensive exchange of material between the blood and the liver parenchyma. Alterations in the number or diameter of fenestrae by drugs, hormones, toxins, and diseases can produce serious perturbations in liver function. Previous studies have shown that disassembly of actin by cytochalasin B or latrunculin A caused a remarkable increase in the number of fenestrae and established the importance of the actin cytoskeleton in the numerical dynamics of fenestrae. So far, however, no mechanism or structure has been described to explain the increase in the number of fenestrae. Using the new actin inhibitor misakinolide, we observed a new structure that appears to serve as a fenestrae-forming center in hepatic endothelial cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bone mass is maintained constant in vertebrates through bone remodeling (BR). BR is characterized by osteoclastic resorption of preexisting bone followed by de novo bone formation by osteoblasts. This sequence of events and the fact that bone mass remains constant in physiological situation lead to the assumption that resorption and formation are regulated by each other during BR. Recent evidence shows that cells of the osteoblastic lineage are involved in osteoclast differentiation. However, the existence of a functional link between the two activities, formation and resorption, has never been shown in vivo. To define the role of bone formation in the control of bone resorption, we generated an inducible osteoblast ablation mouse model. These mice developed a reversible osteopenia. Functional analyses showed that in the absence of bone formation, bone resorption continued to occur normally, leading to an osteoporosis of controllable severity, whose appearance could be prevented by an antiresorptive agent. This study establishes that bone formation and/or bone mass do not control the extent of bone resorption in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The importance of cholesterol for endocytosis has been investigated in HEp-2 and other cell lines by using methyl-β-cyclodextrin (MβCD) to selectively extract cholesterol from the plasma membrane. MβCD treatment strongly inhibited endocytosis of transferrin and EGF, whereas endocytosis of ricin was less affected. The inhibition of transferrin endocytosis was completely reversible. On removal of MβCD it was restored by continued incubation of the cells even in serum-free medium. The recovery in serum-free medium was inhibited by addition of lovastatin, which prevents cholesterol synthesis, but endocytosis recovered when a water-soluble form of cholesterol was added together with lovastatin. Electron microscopical studies of MβCD-treated HEp-2 cells revealed that typical invaginated caveolae were no longer present. Moreover, the invagination of clathrin-coated pits was strongly inhibited, resulting in accumulation of shallow coated pits. Quantitative immunogold labeling showed that transferrin receptors were concentrated in coated pits to the same degree (approximately sevenfold) after MβCD treatment as in control cells. Our results therefore indicate that although clathrin-independent (and caveolae-independent) endocytosis still operates after removal of cholesterol, cholesterol is essential for the formation of clathrin-coated endocytic vesicles.