947 resultados para Flow Computational Fluid Dynamics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the advancement of computer technology and the availability of technology computer aided design (CAD) errors in the designs are getting smaller. To this end the project aims to assess the reliability of the machine (CNC), which was designed by students of mechanical engineering college engineering - UNESP Bauru, by designing, modeling, simulation and machining an airfoil automotive. The profile template selected for the study will be a NACA 0012 machined plates in medium density fiberboard (MDF) and will be performed with a structural analysis simulation using finite elements and a software CFD (Computational Fluid Dynamics), and test the real scale model in a wind tunnel. The results obtained in the wind tunnel and CFD software will be compared to see the error in the machining process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Models of the filtration phenomenon describe the mass balance in bed filtration in terms of particle removal mechanisms, and allow for the determination of global particle removal efficiencies. These models are defined in terms of the geometry and characteristic elements of granule collectors, particles and fluid, and also the composition of the balance of forces that act in the particle collector system. This work analyzes particles collection efficiency comparing downflow and upflow direct filtration, taking into account the contribution of the gravitational factor of the settling removal efficiency in future proposal of initial collection efficiency models for upflow filtration. A qualitative analysis is also made of the proposal for the collection efficiency models for particle removal in direct downflow and upflow filtration using a Computational Fluid Dynamics (CFD) tool. This analysis showed a strong influence of gravitational factor in initial collection efficiency (t = 0) of particles, as well as the reasons of their values to be smaller for upflow filtration in comparison with the downflow filtration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]Ensemble forecasting [1] is a methodology to deal with uncertainties in the numerical wind prediction. In this work we propose to apply ensemble methods to the adaptive wind forecasting model presented in [2]. The wind _eld forecasting is based on a mass-consistent model and a log-linear wind pro_le using as input data the resulting forecast wind from Harmonie [3], a Non-Hydrostatic Dynamic model. The mass-consistent model parameters are estimated by using genetic algorithms [4]. The mesh is generated using the meccano method [5] and adapted to the geometry. The main source of uncertainties in this model is the parameter estimation and the in- trinsic uncertainties of the Harmonie Model…

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]We have recently introduced a new strategy, based on the meccano method [1, 2], to construct a T-spline parameterization of 2D and 3D geometries for the application of iso geometric analysis [3, 4]. The proposed method only demands a boundary representation of the geometry as input data. The algorithm obtains, as a result, high quality parametric transformation between the objects and the parametric domain, i.e. the meccano. The key of the method lies in de_ning an isomorphic transformation between the parametric and physical T-mesh _nding the optimal position of the interior nodes, once the meccano boundary nodes are mapped to the boundary of the physical domain…

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]This work introduces a new technique for tetrahedral mesh optimization. The procedure relocates boundary and inner nodes without changing the mesh topology. In order to maintain the boundary approximation while boundary nodes are moved, a local refinement of tetrahedra with faces on the solid boundary is necessary in some cases. New nodes are projected on the boundary by using a surface parameterization. In this work, the proposed method is applied to tetrahedral meshes of genus-zero solids that are generated by the meccano method. In this case, the solid boundary is automatically decomposed into six surface patches which are parameterized into the six faces of a cube with the Floater parameterization...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]This work presents a novel approach to solve a two dimensional problem by using an adaptive finite element approach. The most common strategy to deal with nested adaptivity is to generate a mesh that represents the geometry and the input parameters correctly, and to refine this mesh locally to obtain the most accurate solution. As opposed to this approach, the authors propose a technique using independent meshes : geometry, input data and the unknowns. Each particular mesh is obtained by a local nested refinement of the same coarse mesh at the parametric space…

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questo elaborato di tesi viene presentata la comparazione tra due codici CFD, rispettivamente Fluent e OpenFOAM, mediante simulazioni che sono alla base di uno studio numerico di flusso attorno ad un pantografo per treno ad alta velocità. Si è apprezzato quindi la facilità d’uso di un software venduto tramite licenza e la difficoltà di un software open source come OpenFOAM, il quale però ha vantaggi in termini di adattamento ai casi più specifici. Sono stati quindi studiati due casi, scambio termico in regime laminare attorno ad un cilindro bidimensionale e flusso turbolento completamente sviluppato in un canale. Tutte le simulazioni numeriche hanno raggiunto convergenza e sono state validate positivamente mediante confronto con dati sperimentali. Il primo caso prevede un cilindro investito da un flusso a temperatura minore rispetto alla temperatura della superficie del cilindro; per avere più riscontri, sono state condotte diverse prove a valori differenti del numero di Prandtl, e per ogni simulazione è stato ricavato il corrispettivo numero di Nusselt, successivamente comparato con i dati sperimentali per la validazione delle prove. A partire dalla creazione della griglia di calcolo, è stato effettuato uno studio del fenomeno in questione, creando così una griglia di calcolo sviluppata a valle del cilindro avente maggior densità di celle a ridosso della parte del cilindro. In aggiunta, svolgendo le prove con schemi numerici sia del primo che del secondo ordine, si è constatata la miglior sensibilità degli schemi numerici del secondo ordine rispetto a quelli del primo ordine. La seconda tipologia di simulazioni consiste in un flusso turbolento completamente sviluppato all’interno di un canale; sono state svolte simulazioni senza e con l’uso delle wall functions, e quindi usate griglie di calcolo differenti per i due tipi di simulazioni, già disponibili per entrambi i software. I dati ottenuti mostrano uno sforzo computazionale maggiore per le simulazioni che non prevedono l’uso delle wall functions, e quindi una maggiore praticità per le simulazioni con le wall functions. Inoltre, le simulazioni di questo secondo caso sono state svolte con diversi modelli di turbolenza; in Fluent sono stati utilizzati i modelli k-ε e RSM mentre in OpenFOAM è stato utilizzato solo il modello k-ε in quanto il modello RSM non è presente. La validazione dei risultati è affidata alla comparazione con i dati sperimentali ricavati da Moser et all mediante simulazioni DNS, mettendo in risalto la minor accuratezza delle equazioni RANS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coastal sand dunes represent a richness first of all in terms of defense from the sea storms waves and the saltwater ingression; moreover these morphological elements constitute an unique ecosystem of transition between the sea and the land environment. The research about dune system is a strong part of the coastal sciences, since the last century. Nowadays this branch have assumed even more importance for two reasons: on one side the born of brand new technologies, especially related to the Remote Sensing, have increased the researcher possibilities; on the other side the intense urbanization of these days have strongly limited the dune possibilities of development and fragmented what was remaining from the last century. This is particularly true in the Ravenna area, where the industrialization united to the touristic economy and an intense subsidence, have left only few dune ridges residual still active. In this work three different foredune ridges, along the Ravenna coast, have been studied with Laser Scanner technology. This research didn’t limit to analyze volume or spatial difference, but try also to find new ways and new features to monitor this environment. Moreover the author planned a series of test to validate data from Terrestrial Laser Scanner (TLS), with the additional aim of finalize a methodology to test 3D survey accuracy. Data acquired by TLS were then applied on one hand to test some brand new applications, such as Digital Shore Line Analysis System (DSAS) and Computational Fluid Dynamics (CFD), to prove their efficacy in this field; on the other hand the author used TLS data to find any correlation with meteorological indexes (Forcing Factors), linked to sea and wind (Fryberger's method) applying statistical tools, such as the Principal Component Analysis (PCA).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of microchannel heat exchangers was assessed in gas-to-liquid applications in the order of several tens of kWth . The technology is suitable for exhaust heat recovery systems based on organic Rankine cycle. In order to design a light and compact microchannel heat exchanger, an optimization process is developed. The model employed in the procedure is validated through computational fluid-dynamics analysis with commercial software. It is shown that conjugate effects have a significant impact on the heat transfer performance of the device.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

KIVA is an open Computational Fluid Dynamics (CFD) source code that is capable to compute the transient two and three-dimensional chemically reactive fluid flows with spray. The latest version in the family of KIVA codes is the KIVA-4 which is capable of handling the unstructured mesh. This project focuses on the implementation of the Conjugate Heat Transfer code (CHT) in KIVA-4. The previous version of KIVA code with conjugate heat transfer code has been developed at Michigan Technological University by Egel Urip and is be used in this project. During the first phase of the project, the difference in the code structure between the previous version of KIVA and the KIVA-4 has been studied, which is the most challenging part of the project. The second phase involves the reverse engineering where the CHT code in previous version is extracted and implemented in KIVA-4 according to the new code structure. The validation of the implemented code is performed using a 4-valve Pentroof engine case. A solid cylinder wall has been developed using GRIDGEN which surrounds 3/4th of the engine cylinder and heat transfer to the solid wall during one engine cycle (0-720 Crank Angle Degree) is compared with that of the reference result. The reference results are nothing but the same engine case run in the previous version with the original code developed by Egel. The results of current code are very much comparable to that of the reference results which verifies that successful implementation of the CHT code in KIVA-4.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Moderne generische Fertigungsverfahren für innengekühlte Werkzeuge bieten nahezu beliebige Freiheitsgrade zur Gestaltung konturnaher Kühlkanäle. Daraus resultiert ein erhöhter Anspruch an das Werkzeugengineering und die Optimierung der Kühlleistung. Geeignete Simulationsverfahren (wie z.B. Computational Fluid Dynamics - CFD) unterstützen die optimierte Werkzeugauslegung in idealer Weise. Mit der Erstellung virtueller Teststände können Varianten effizient und kostengünstig verglichen und die Kosten für Prototypen und Nacharbeiten reduziert werden. Im Computermodell des Werkzeugs erlauben Soft-Sensoren an beliebiger Position die Überwachung temperatur-kritischer Stellen sowohl im Fluid- als auch im Solidbereich. Der hier durchgeführte Benchmark vergleicht die Performance eines optimierten Werkzeugeinsatzes mit einer konventionellen Kühlung. Die im virtuellen Prozess vorhergesagte Zykluszeitreduzierung steht in guter Übereinstimmung mit realen Experimenten an den ausgeführten Werkzeugen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the context of expensive numerical experiments, a promising solution for alleviating the computational costs consists of using partially converged simulations instead of exact solutions. The gain in computational time is at the price of precision in the response. This work addresses the issue of fitting a Gaussian process model to partially converged simulation data for further use in prediction. The main challenge consists of the adequate approximation of the error due to partial convergence, which is correlated in both design variables and time directions. Here, we propose fitting a Gaussian process in the joint space of design parameters and computational time. The model is constructed by building a nonstationary covariance kernel that reflects accurately the actual structure of the error. Practical solutions are proposed for solving parameter estimation issues associated with the proposed model. The method is applied to a computational fluid dynamics test case and shows significant improvement in prediction compared to a classical kriging model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transcatheter aortic valve replacement (TAVR) as well as thoracic and abdominal endovascular aortic repair (TEVAR and EVAR) rely on accurate pre- and postprocedural imaging. This review article discusses the application of imaging, including preprocedural assessment and measurements as well as postprocedural imaging of complications. Furthermore, the exciting perspective of computational fluid dynamics (CFD) based on cross-sectional imaging is presented. TAVR is a minimally invasive alternative for treatment of aortic valve stenosis in patients with high age and multiple comorbidities who cannot undergo traditional open surgical repair. Given the lack of direct visualization during the procedure, pre- and peri-procedural imaging forms an essential part of the intervention. Computed tomography angiography (CTA) is the imaging modality of choice for preprocedural planning. Routine postprocedural follow-up is performed by echocardiography to confirm treatment success and detect complications. EVAR and TEVAR are minimally invasive alternatives to open surgical repair of aortic pathologies. CTA constitutes the preferred imaging modality for both preoperative planning and postoperative follow-up including detection of endoleaks. Magnetic resonance imaging is an excellent alternative to CT for postoperative follow-up, and is especially beneficial for younger patients given the lack of radiation. Ultrasound is applied in screening and postoperative follow-up of abdominal aortic aneurysms, but cross-sectional imaging is required once abnormalities are detected. Contrast-enhanced ultrasound may be as sensitive as CTA in detecting endoleaks.