954 resultados para Fishes -- Adaptation -- Mediterranean Sea


Relevância:

100.00% 100.00%

Publicador:

Resumo:

1951-1957 isued as its Serial no.733, etc

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Floating plastic debris sampled in surface waters of northwestern Mediterranean Sea during summer 2013. Geographical coordinates and dates of sampling are available in the dataset.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pore water chemistry of mud volcanoes from the Olimpi Mud Volcano Field and the Anaximander Mountains in the eastern Mediterranean Sea have been studied for three major purposes: (1) modes and velocities of fluid transport were derived to assess the role of (upward) advection, and bioirrigation for benthic fluxes. (2) Differences in the fluid chemistry at sites of Milano mud volcano (Olimpi area) were compiled in a map to illustrate the spatial heterogeneity reflecting differences in fluid origin and transport in discrete conduits in near proximity. (3) Formation water temperatures of seeping fluids were calculated from theoretical geothermometers to predict the depth of fluid origin and geochemical reactions in the deeper subsurface. No indications for downward advection as required for convection cells have been found. Instead, measured pore water profiles have been simulated successfully by accounting for upward advection and bioirrigation. Advective flow velocities are found to be generally moderate (3-50 cm/y) compared to other cold seep areas. Depth-integrated rates of bioirrigation are 1-2 orders of magnitude higher than advective flow velocities documenting the importance of bioirrigation for flux considerations in surface sediments. Calculated formation water temperatures from the Anaximander Mountains are in the range of 80 to 145 °C suggesting a fluid origin from a depth zone associated with the seismic decollement. It is proposed that at that depth clay mineral dehydration leads to the formation and advection of fluids reduced in salinity relative to sea water. This explains the ubiquitous pore water freshening observed in surface sediments of the Anaximander Mountain area. Multiple fluid sources and formation water temperatures of 55 to 80 °C were derived for expelled fluids of the Olimpi area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sea surface temperature (SST) profiles over the last 25 kyr derived from alkenone measurements are studied in four cores from a W-E latitudinal transect encompassing the Gulf of Cadiz (Atlantic Ocean), the Alboran Sea, and the southern Tyrrhenian Sea (western Mediterranean). The results document the sensitivity of the Mediterranean region to the short climatic changes of the North Atlantic Ocean, particularly those involving the latitudinal position of the polar front. The amplitude of the SST oscillations increases toward the Tyrrhenian Sea, indicating an amplification effect of the Atlantic signal by the climatic regime of the Mediterranean region. All studied cores show a shorter cooling phase (700 years) for the Younger Dryas (YD) than that observed in the North Atlantic region (1200 years). This time diachroneity is related to an intra-YD climatic change documented in the European continent. Minor oscillations in the southward displacement of the North Atlantic polar front may also have driven this early warming in the studied area. During the Holocene a regional diachroneity propagating west to east is observed for the SST maxima, 11.5-10.2 kyr B.P. in the Gulf of Cadiz, 10-9 kyr B.P. in the Alboran Sea, and 8.9-8.4 kyr B.P. in the Thyrrenian Sea. A general cooling trend from these SST maxima to present day is observed during this stage, which is marked by short cooling oscillations with a periodicity of 730±40 years and its harmonics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents newly obtained coral ages of the cold-water corals Lophelia pertusa and Madrepora oculata collected in the Alboran Sea and the Strait of Sicily (Urania Bank). These data were combined with all available Mediterranean Lophelia and Madrepora ages compiled from literature to conduct a basin-wide assessment of the spatial and temporal occurrence of these prominent framework-forming scleractinian species in the Mediterranean realm and to unravel the palaeo-environmental conditions that controlled their proliferation or decline. For the first time special focus was placed on a closer examination of potential differences occurring between the eastern and western Mediterranean sub-basins. Our results clearly demonstrate that cold-water corals occurred sparsely in the entire Mediterranean during the last glacial before becoming abundant during the Bølling-Allerød warm interval, pointing to a basin-wide, almost concurrent onset in (re-)colonisation after ~13.5 ka. This time coincides with a peak in meltwater discharge originating from the northern Mediterranean borderlands which caused a major reorganisation of the Mediterranean thermohaline circulation. During the Younger Dryas and Holocene, some striking differences in coral proliferation were identified between the sub-basins such as periods of highly prolific coral growth in the eastern Mediterranean Sea during the Younger Dryas and in the western basin during the Early Holocene, whereas a temporary pronounced coral decline during the Younger Dryas was exclusively affecting coral sites in the Alboran Sea. Comparison with environmental and oceanographic data revealed that the proliferation of the Mediterranean corals is linked with enhanced productivity conditions. Moreover, corals thrived in intermediate depths and showed a close relationship with intermediate water mass circulation in the Mediterranean sub-basins. For instance, reduced Levantine Intermediate Water formation hampered coral growth in the eastern Mediterranean Sea during sapropel S1 event as reduced Winter Intermediate Water formation did in the westernmost part of the Mediterranean (Alboran Sea) during the Mid-Holocene. Overall, this study clearly demonstrates the importance to consider region-specific environmental changes as well as species-specific environmental preferences in interpreting coral chronologies. Moreover, it highlights that the occurrence or decline of cold-water corals is not controlled by one key parameter but rather by a complex interplay of various environmental variables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acknowledgements This study was part of the Tursiops Project of the Dolphin Research Centre of Caprera, La Maddalena. Financial and logistical support was provided by the Centro Turistico Studentesco (CTS) and by the National Park of the Archipelago de La Maddalena. We thank the Natural Reserve of Bocche di Bonifacio for the support provided during data collection. The authors thank the numerous volunteers of the Caprera Dolphin Research Centre and especially Marco Ferraro, Mirko Ugo, Angela Pira and Maurizio Piras whose assistance during field observation and skills as a boat driver were invaluable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-series of downward alkenone fluxes have been investigated at 200 m depth over a one year sediment trap experiment, in the Northwestern Mediterranean Sea. Alkenone flux maxima occurred in autumn and to a lesser extent in May, during the spring bloom. Temperature estimates calculated from the UK'37 index revealed that alkenone producers preferentially develop in subsurface waters (at about 50 m) in spring, whereas the autumn alkenone production occurred upper in the water column (around 30 m). Examination of the core-top UK'37 index values at various sites of the Northwestern Mediterranean basin, suggested that the spring bloom period do not significantly imprint the temperatures recorded in the sediments. The sedimentary temperature estimates would rather reflect annually integrated SST, with a major influence of the autumnal post-bloom development of the coccolithophores in the euphotic zone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clay mineral assemblages in a sediment core from the distal Nile discharge plume off Israel have been used to reconstruct the late Quaternary Nile sediment discharge into the Eastern Mediterranean Sea (EMS). The record spans the last ca. 140 ka. Smectite abundances indicate the influence of the Blue Nile and Atbara that have their headwaters in the volcanic rocks of the Ethiopian highlands. Kaolinite abundances indicate the influence of wadis, which contribute periodically to the suspension load of the Nile. Due to the geographical position, the climate and the sedimentary framework of the EMS is controlled by two climate systems. The long-term climate regime was governed by the African monsoon that caused major humid periods with enhanced sediment discharge at 132 to <126 ka (AHP5), 116 to 99 ka (AHP4), and 89 to 77 ka (AHP3). They lasted much longer than the formation of the related sapropel layers S5 (>2 ka), S4 (3.5 ka) and S3 (5 ka). During the last glacial period (MIS 4-2) the long-term changes of the monsoonal system were superimposed by millennial-scale changes of an intensified mid-latitude glacial system. This climate regime caused short but pronounced drought periods in the Nile catchment, which are linked to Heinrich Events and alternate with more humid interstadials. The clay mineral record further implies that feedback mechanisms between vegetation cover and sediment discharge of the Nile are detectable but of minor importance for the sedimentary record in the southeastern Mediterranean Sea during the investigated African Humid Periods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the glacial to postglacial delta13C differences between endobenthic Uvigerina peregrina species from the Alboran basin and from other mediterranean basins, changes in the fertility of the western part of this basin during the last deglaciation are reconstructed. As a result of particulate organic carbon (POC) rain from the highly productive upwelling cell along the northwestern margin of the Alboran basin, U. peregrina is presently depleted by about 1.6per mil with respect to the measured delta13C values of bottom water SumCO2 and by about 0.9per mil with respect to specimens from other areas of the western Mediterranean or from the Gulf of Cadiz within the Mediterranean Outflow Water. The Uvigerina delta13C difference between the Alboran Sea and the Gulf of Cadiz (Delta delta13C), was close to 0per mil at the beginning of the last deglaciation and during the late glacial time. This suggests that highly fertile systems set in the Alboran Sea near 16 kyr B.P. Two rapid increases in the Delta delta13C offset are recorded near 15 kyr and 11 kyr B.P. Fluctuations around 1.1 to 1.2per mil occurred during the early Holocene, and a maximum was reached near 9 kyr B.P. After 4 kyr the Delta delta13C offset decreased to its present-day average value of 0.9per mil. Changes in the intensity of surficial production cannot account for all the observed fluctuations, especially in the early Holocene time. A strong decrease in the intermediate and deep water ventilation of the Alboran basin may have occurred near 8-9 kyr, in phase with the last stagnant phase in the eastern Mediterranean and the deposition of Sapropel S1. As a result, the redistribution and remineralization at depth of the produced organic matter was incomplete. The POC rain reaching the sediment was locally intensified and caused the lowering of the delta13C values of endobenthic foraminifers such as U. peregrina. The benthic 13C signal suggests that the difference between the Alboran Sea and the Gulf of Cadiz was at its maximum. At the same time, an important modification in the water masses structure may have occurred near 9-8 kyr B.P. The deepening of the permanent pycnocline probably related to a thicker Atlantic jet at a stage of high sea level stand is recorded by the replacement of the right coiling N. pachyderma dominance (coincident with a shallow pycnocline) by the G. inflata dominance (coincident with a deep pycnocline). Diatom abundances were strongly reduced indicating an important modification of the productive system. The glacial-postglacial evolution of productivity within the Alboran basin was therefore more complex than in the adjacent Atlantic Ocean and opposite to the global one which displays a general increase in productivity during glacial time. Although it is the global budget of paleoproductivity that would drive the partitioning of carbon within the ocean, local or regional discrepancies with the global glacial-interglacial model must be addressed. Local winds and regional atmospheric pressure systems, which are the forcing factors for circulation and exchange with the Atlantic, control the fertile systems of the Alboran basin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sapropels -organic-matter rich layers- are common in Neogene sediments of the eastern Mediterranean Sea. The formation of these layers has been attributed to climate-related increases in organic-matter production (Calvert et al., 1992, doi:10.1038/359223a0; Rossignol-Strick et al., 1982, doi:10.1038/295105a0; Rohling, 1994, doi:10.1016/0025-3227(94)90202-X) and increased organic-matter preservation due to oxygen depletion in more stagnant bottom waters (Rossignol-Strick et al., 1982, doi:10.1038/295105a0; Rohling, 1994, doi:10.1016/0025-3227(94)90202-X). Here we report that eastern Mediterranean Pliocene sapropels (Emeis et al., 1996, doi:10.2973/odp.proc.ir.160.102.1996) contain molecular fossils of a compound (isorenieratene) known to be synthesized by photosynthetic green sulphur bacteria, suggesting that sulphidic (euxinic) -and therefore anoxic- conditions prevailed in the photic zone of the water column. These sapropels also have a high trace-metal content, which is probably due to the efficient scavenging of these metals by precipitating sulphides in a euxinic water column. The abundance and sulphur-isotope composition of pyrite are consistent with iron sulphide formation in the water column. We conclude that basin-wide water-column euxinia occurred over substantial periods during Pliocene sapropel formation in the eastern Mediterranean Sea, and that the ultimate degradation of the increased organic-matter production was strongly influential in generating and sustaining the euxinic conditions.