434 resultados para Filler
Resumo:
Fillers are an important tool in the armamentarium of the physician combating aging phenomena. A wide variety of filler substances are now available that meet many, but by far not all, needs in aesthetic medicine. The most commonly used substances now are hyaluronic acid and collagen preparations that have slightly different indications, but collagen requires pre-use testing to rule out inflammatory complications. Poly-L-lactic acid has gained its place in the filling of adipose tissue wasting in HIV-infected patients. Autologous fat is easy to harvest and inject and has virtually no risk of adverse side effects. Permanent fillers may be of advantage but carry the risk of permanent adverse reactions. Skillful combination of different fillers as well as with botulinum toxin injections and other cosmetic procedures may give optimal results.
Resumo:
The objective of this investigation was to determine the fate of thin buccal bone encasing the prominent roots of maxillary anterior teeth following extraction. Resorption of the buccal plate compromises the morphology of the localized edentulous ridge and makes it challenging to place an implant in the optimal position for prosthetic restoration. In addition, the use of Bio-Oss as a bone filler to maintain the form of the edentulous ridge was evaluated. Nine patients were selected for the extraction of 36 maxillary anterior teeth. Nineteen extraction sockets received Bio-Oss, and seventeen sockets received no osteogenic material. All sites were completely covered with soft tissue at the conclusion of surgery. Computerized tomographic scans were made immediately following extraction and then at 30 to 90 days after healing so as to assess the fate of the buccal plates and resultant form of the edentulous sites. The results were assessed by an independent radiologist, with a crest width of 6 mm regarded as sufficient to place an implant. Those sockets treated with Bio-Oss demonstrated a loss of less than 20% of the buccal plate in 15 of 19 test sites (79%). In contrast, 12 of 17 control sockets (71%) demonstrated a loss of more than 20% of the buccal plate. In conclusion, the Bio-Oss test sites outperformed the control sites by a significant margin. No investigator was able to predict which site would be successful without the grafting material even though all were experienced clinicians. This leads to the conclusion that a patient has a significant benefit from receiving grafting materials at the time of extraction.
Resumo:
Early implant placement is one treatment option for implant therapy following single-tooth extraction in the anterior maxilla. The surgical technique presented here is characterized by tooth extraction without flap elevation, a 4- to 8-week soft tissue healing period, implant placement in a correct three-dimensional position, simultaneous contour augmentation on the facial aspect with guided bone regeneration using a bioabsorbable collagen membrane combined with autogenous bone chips and a low-substitution bone filler, and tension-free primary wound closure. The surgical step-by-step procedure is presented with a case report. In addition, the biologic rationale is discussed.
Resumo:
Three biphasic calcium phosphate (BCP) bone substitute materials with hydroxyapatite (HA)/tricalcium phosphate (TCP) ratios of 20/80, 60/40, and 80/20 were compared to coagulum, particulated autogenous bone, and deproteinized bovine bone mineral (DBBM) in membrane-protected bone defects. The defects were prepared in the mandibles of 24 minipigs that were divided into four groups of six with healing times of 4, 13, 26, and 52 weeks, respectively. The histologic and histomorphometric evaluation focused on differences in amount and pattern of bone formation, filler degradation, and the interface between bone and filler. Collapse of the expanded polytetrafluoroethylene barrier membrane into the coagulum defects underlined the necessity of a filler material to maintain the augmented volume. Quantitatively, BCP 20/80 showed bone formation and degradation of the filler material similar to autografts, whereas BCP 60/40 and BCP 80/20 rather equaled DBBM. Among the three BCP's, the amount of bone formation and degradation of filler material seemed to be inversely proportional to the HA/TCP ratio. The fraction of filler surface covered with bone was highest for autografts at all time points and was higher for DBBM than BCP 80/20 and 60/40 at the early healing phase. TRAP-positive multinucleated cells were identified on BCP and DBBM surfaces without showing typical signs of resorption lacunae.
Resumo:
Adding conductive carbon fillers to insulating thermoplastic resins increases composite electrical and thermal conductivity. Often, as much of a single type of carbon filler is added to achieve the desired conductivity, while still allowing the material to be molded into a bipolar plate for a fuel cell. In this study, varying amounts of three different carbons (carbon black, synthetic graphite particles, and carbon fiber) were added to Vectra A950RX Liquid Crystal Polymer. The in-plane thermal conductivity of the resulting single filler composites were tested. The results showed that adding synthetic graphite particles caused the largest increase in the in-plane thermal conductivity of the composite. The composites were modeled using ellipsoidal inclusion problems to predict the effective in-plane thermal conductivities at varying volume fractions with only physical property data of constituents. The synthetic graphite and carbon black were modeled using the average field approximation with ellipsoidal inclusions and the model showed good agreement with the experimental data. The carbon fiber polymer composite was modeled using an assemblage of coated ellipsoids and the model showed good agreement with the experimental data.
Resumo:
Polymers are typically electrically and thermally insulating materials. The electrical and thermal conductivities of polymers can be increased by the addition conductive fillers such as carbons. Once the polymer composites have been made electrically and thermally conductive, they can be used in applications where these conductivities are desired such as electromagnetic shielding and static dissipation. In this project, three carbon nanomaterials are added to polycarbonate to enhance the electrical and thermal conductivity of the resulting composite. Hyperion Catalysis FIBRILs carbon nanotubes were added to a maximum loading of 8 wt%. Ketjenblack EC-600 JD carbon black was added to a maximum loading of 10 wt%. XG Sciences xGnP™ graphene nanoplatelets were added to a maximum loading of 15 wt%. These three materials have drastically different morphologies and will have varying effects on the various properties of polycarbonate composites. It was determined that carbon nanotubes have the largest effect on electrical conductivity with an 8 wt% carbon nanotube in polycarbonate composite having an electrical conductivity of 0.128 S/cm (from a pure polycarbonate value of 10-17 S/cm). Carbon black has the next largest effect with an 8 wt% carbon black in polycarbonate composite having an electrical conductivity of 0.008 S/cm. Graphene nanoplatelets have the least effect with an 8 wt% graphene nanoplatelet in polycarbonate having an electrical conductivity of 2.53 x 10-8 S/cm. Graphene nanoplatelets show a significantly higher effect on increasing thermal conductivity than either carbon nanotubes or carbon black. Mechanically, all three materials have similar effects with graphene nanoplatelets being somewhat more effective at increasing the tensile modulus of the composite than the other fillers. Carbon black and graphene nanoplatelets show standard carbon-filler rheology where the addition of filler increases the viscosity of the resulting composite. Carbon nanotubes, on the other hand, show an unexpected rheology. As carbon nanotubes are added to polycarbonate the viscosity of the composite is reduced below that of the original polycarbonate. It was seen that the addition of carbon nanotubes offsets the increased viscosity from a second filler, such as carbon black or graphene nanoplatelets.
Resumo:
In this project we developed conductive thermoplastic resins by adding varying amounts of three different carbon fillers: carbon black (CB), synthetic graphite (SG) and multi-walled carbon nanotubes (CNT) to a polypropylene matrix for application as fuel cell bipolar plates. This component of fuel cells provides mechanical support to the stack, circulates the gases that participate in the electrochemical reaction within the fuel cell and allows for removal of the excess heat from the system. The materials fabricated in this work were tested to determine their mechanical and thermal properties. These materials were produced by adding varying amounts of single carbon fillers to a polypropylene matrix (2.5 to 15 wt.% Ketjenblack EC-600 JD carbon black, 10 to 80 wt.% Asbury Carbon's Thermocarb TC-300 synthetic graphite, and 2.5 to 15 wt.% of Hyperion Catalysis International's FIBRILTM multi-walled carbon nanotubes) In addition, composite materials containing combinations of these three fillers were produced. The thermal conductivity results showed an increase in both through-plane and in-plane thermal conductivities, with the largest increase observed for synthetic graphite. The Department of Energy (DOE) had previously set a thermal conductivity goal of 20 W/m·K, which was surpassed by formulations containing 75 wt.% and 80 wt.% SG, yielding in-plane thermal conductivity values of 24.4 W/m·K and 33.6 W/m·K, respectively. In addition, composites containing 2.5 wt.% CB, 65 wt.% SG, and 6 wt.% CNT in PP had an in–plane thermal conductivity of 37 W/m·K. Flexural and tensile tests were conducted. All composite formulations exceeded the flexural strength target of 25 MPa set by DOE. The tensile and flexural modulus of the composites increased with higher concentration of carbon fillers. Carbon black and synthetic graphite caused a decrease in the tensile and flexural strengths of the composites. However, carbon nanotubes increased the composite tensile and flexural strengths. Mathematical models were applied to estimate through-plane and in-plane thermal conductivities of single and multiple filler formulations, and tensile modulus of single-filler formulations. For thermal conductivity, Nielsen's model yielded accurate thermal conductivity values when compared to experimental results obtained through the Flash method. For prediction of tensile modulus Nielsen's model yielded the smallest error between the predicted and experimental values. The second part of this project consisted of the development of a curriculum in Fuel Cell and Hydrogen Technologies to address different educational barriers identified by the Department of Energy. By the creation of new courses and enterprise programs in the areas of fuel cells and the use of hydrogen as an energy carrier, we introduced engineering students to the new technologies, policies and challenges present with this alternative energy. Feedback provided by students participating in these courses and enterprise programs indicate positive acceptance of the different educational tools. Results obtained from a survey applied to students after participating in these courses showed an increase in the knowledge and awareness of energy fundamentals, which indicates the modules developed in this project are effective in introducing students to alternative energy sources.
Resumo:
OBJECTIVE To evaluate the effects of different hemostatic agents upon the outcome of periapical surgery. DESIGN A retrospective study was made of patients subjected to periapical surgery between 2006-2009 with the ultrasound technique and using MTA as retrograde filler material. We included patients with a minimum follow-up of 12 months, divided into two groups according to the hemostatic agent used: A) dressings impregnated in anesthetic solution with adrenalin; or B) aluminum chloride paste (Expasyl). Radiological controls were made after 6 and 12 months, and on the last visit. The global evolution scale proposed by von Arx and Kurt (1999) was used to establish the outcome of periapical surgery. RESULTS A total of 96 patients (42 males and 54 females) with a mean age of 40.7 years were included. There were 50 patients in the aluminum chloride group and 46 patients in the anesthetic solution with vasoconstrictor group. No significant differences were observed between the two groups in terms of outcome after 12 months - the success rate being 58.6% and 61.7% in the anesthetic solution with vasoconstrictor and aluminum chloride groups, respectively (p > 0.05). CONCLUSION The outcome after 12 months of follow-up was better in the aluminum chloride group than in the anesthetic solution with vasoconstrictor group, though the difference was not significant.
Resumo:
Miniature artist's book. Goal To create standard size housing for miniature books so that they can be shelved with the collection. Treatment Based on a standard size, a clamshell box with foam filler was created to house a miniature artist's book. Cotton tape secured beneath the foam was added to gently lift the book from the foam insert.
Resumo:
Plaster death mask. Goal To design a box that can store and exhibit the death mask without requiring the removal or re-positioning of the mask. Treatment A custom, cloth-covered box with a drop-front was constructed to fit the dimensions of the mask and foam filler. Foam was carved to accommodate the mask and then covered with unbleached muslin.
Resumo:
The shuttle vector plasmid pZ189 was used to find the kinds of mutations that are induced by herpes simplex virus type-1 (HSV-1). In cells infected by HSV-1 the frequency of mutation in supF gene, the mutagenesis marker, was increased over background by from two- to seven-fold, reaching 0.14-0.45%. No increase was induced by infection by vaccinia virus under the same conditions. Mutagenesis was an early event, showing a four-fold increase in mutation frequency at only two hours after infection, and peaking at a seven-fold increase at four hours after infection. DNA sequencing and gel electrophoresis analysis were performed on 105 HSV-1 induced mutants and 65 spontaneous mutants and provided the following information: (1) A change in plasmid size was seen in 54% of HSV-1 related mutants, compared with only 37% of spontaneous mutants. (2) Among point mutations, the predominant type was G:C to A:T transition, which accounted for 51% of point mutations in mutants isolated from cells infected with HSV-1, and 32% of point mutations in spontaneous mutants. (3) Deletions of DNA were seen in HSV-1 related mutants at a frequency of 40%, compared with 29% in spontaneous mutants. The HSV-1 related deletions were about half the length of spontaneous mutants and three contained short filler sequences. (4) Fifteen (15%) of HSV-1 induced mutants revealed the altered restriction patterns on agarose gel electrophoresis analysis and were due either to rearrangements of plasmid DNA, and/or to insertion of sequences derived from chromosomal DNA (seven plasmids). No insertions of DNA from HSV-1 were detected. Among spontaneous mutants, only 5 (7.7%) were rearrangements and none had inserted chromosomal DNA. (5) DNA sequence analysis of seven plasmids with inserted chromosomal DNA revealed that four cases had repetitive DNA sequences integrated and the other three were unidentified sequences from the GenBank database. Three repetitive DNA included $\alpha$ satellite, Alu and KpnI family sequences. The other sequence was identified as tRNA-like component. The observed mutations have implications for the mechanism of malignant transformation of cells by HSV-1. ^
Resumo:
Firn microstructure is accurately characterized using images obtained from scanning electron microscopy (SEM). Visibly etched grain boundaries within images are used to create a skeleton outline of the microstructure. A pixel-counting utility is applied to the outline to determine grain area. Firn grain sizes calculated using the technique described here are compared to those calculated using the techniques of Cow (1969) and Gay and Weiss (1999) on samples of the same material, and are found to be substantially smaller. The differences in grain size between the techniques are attributed to sampling deficiencies (e.g. the inclusion of pore filler in the grain area) in earlier methods. The new technique offers the advantages of greater accuracy and the ability to determine individual components of the microstructure (grain and pore), which have important applications in ice-core analyses. The new method is validated by calculating activation energies of grain boundary diffusion using predicted values based on the ratio of grain-size measurements between the new and existing techniques. The resulting activation energy falls within the range of values previously reported for firn/ice.
Resumo:
The aim of this study was to evaluate in humans the amount of new bone after sinus floor elevation with a synthetic bone substitute material consisting of nanocrystalline hydroxyapatite embedded in a highly porous silica gel matrix. The lateral approach was applied in eight patients requiring sinus floor elevation to place dental implants. After elevation of the sinus membrane, the cavities were filled with 0.6-mm granules of nanocrystalline hydroxyapatite mixed with the patient's blood. A collagen membrane (group 1) or a platelet-rich fibrin (PRF) membrane (group 2) was placed over the bony window. After healing periods between 7 and 11 months (in one case after 24 months), 16 biopsy specimens were harvested with a trephine bur during implant bed preparation. The percentage of new bone, residual filler material, and soft tissue was determined histomorphometrically. Four specimens were excluded from the analysis because of incomplete biopsy removal. In all other specimens, new bone was observed in the augmented region. For group 1, the amount of new bone, residual graft material, and soft tissue was 28.7% ± 5.4%, 25.5% ± 7.6%, and 45.8% ± 3.2%, respectively. For group 2, the values were 28.6% ± 6.90%, 25.7% ± 8.8%, and 45.7% ± 9.3%, respectively. All differences between groups 1 and 2 were not statistically significant. The lowest and highest values of new bone were 21.2% and 34.1% for group 1 and 17.4% and 37.8% for group 2, respectively. The amount of new bone after the use of nanocrystalline hydroxyapatite for sinus floor elevation in humans is comparable to values found in the literature for other synthetic or xenogeneic bone substitute materials. There was no additional beneficial effect of the PRF membrane over the non-cross-linked collagen membrane.
Resumo:
OBJECTIVES Recent studies suggest that a combination of enamel matrix derivative (EMD) with grafting material may improve periodontal wound healing/regeneration. Newly developed calcium phosphate (CaP) ceramics have been demonstrated a viable synthetic replacement option for bone grafting filler materials. AIMS This study aims to test the ability for EMD to adsorb to the surface of CaP particles and to determine the effect of EMD on downstream cellular pathways such as adhesion, proliferation, and differentiation of primary human osteoblasts and periodontal ligament (PDL) cells. MATERIALS AND METHODS EMD was adsorbed onto CaP particles and analyzed for protein adsorption patterns via scanning electron microscopy and high-resolution immunocytochemistry with an anti-EMD antibody. Cell attachment and cell proliferation were quantified using CellTiter 96 One Solution Cell Assay (MTS). Cell differentiation was analyzed using real-time PCR for genes encoding Runx2, alkaline phosphatase, osteocalcin, and collagen1α1, and mineralization was assessed using alizarin red staining. RESULTS Analysis of cell attachment revealed significantly higher number of cells attached to EMD-adsorbed CaP particles when compared to control and blood-adsorbed samples. EMD also significantly increased cell proliferation at 3 and 5 days post-seeding. Moreover, there were significantly higher mRNA levels of osteoblast differentiation markers including collagen1α1, alkaline phosphatase, and osteocalcin in osteoblasts and PDL cells cultured on EMD-adsorbed CaP particles at various time points. CONCLUSION The present study suggests that the addition of EMD to CaP grafting particles may influence periodontal regeneration by stimulating PDL cell and osteoblast attachment, proliferation, and differentiation. Future in vivo and clinical studies are required to confirm these findings. CLINICAL RELEVANCE The combination of EMD and CaP may represent an option for regenerative periodontal therapy in advanced intrabony defects.
Resumo:
Injectable fillers nowadays represent a pillar in facial rejuvenation and make a significant contribution to the success of the treatment. Despite their obvious benefits, a wide range of possible complications such as immediate, late, delayed, temporary, or irreversible adverse effects have to be respected. Differentiating the various filler materials, these effects are assigned to histopathology findings and currently available treatment options.