945 resultados para File processing (Computer science)
Resumo:
This work is aimed at building an adaptable frame-based system for processing Dravidian languages. There are about 17 languages in this family and they are spoken by the people of South India.Karaka relations are one of the most important features of Indian languages. They are the semabtuco-syntactic relations between verbs and other related constituents in a sentence. The karaka relations and surface case endings are analyzed for meaning extraction. This approach is comparable with the borad class of case based grammars.The efficiency of this approach is put into test in two applications. One is machine translation and the other is a natural language interface (NLI) for information retrieval from databases. The system mainly consists of a morphological analyzer, local word grouper, a parser for the source language and a sentence generator for the target language. This work make contributios like, it gives an elegant account of the relation between vibhakthi and karaka roles in Dravidian languages. This mapping is elegant and compact. The same basic thing also explains simple and complex sentence in these languages. This suggests that the solution is not just ad hoc but has a deeper underlying unity. This methodology could be extended to other free word order languages. Since the frame designed for meaning representation is general, they are adaptable to other languages coming in this group and to other applications.
Resumo:
To construct Biodiversity richness maps from Environmental Niche Models (ENMs) of thousands of species is time consuming. A separate species occurrence data pre-processing phase enables the experimenter to control test AUC score variance due to species dataset size. Besides, removing duplicate occurrences and points with missing environmental data, we discuss the need for coordinate precision, wide dispersion, temporal and synonymity filters. After species data filtering, the final task of a pre-processing phase should be the automatic generation of species occurrence datasets which can then be directly ’plugged-in’ to the ENM. A software application capable of carrying out all these tasks will be a valuable time-saver particularly for large scale biodiversity studies.
Resumo:
This paper presents a parallel Linear Hashtable Motion Estimation Algorithm (LHMEA). Most parallel video compression algorithms focus on Group of Picture (GOP). Based on LHMEA we proposed earlier [1][2], we developed a parallel motion estimation algorithm focus inside of frame. We divide each reference frames into equally sized regions. These regions are going to be processed in parallel to increase the encoding speed significantly. The theory and practice speed up of parallel LHMEA according to the number of PCs in the cluster are compared and discussed. Motion Vectors (MV) are generated from the first-pass LHMEA and used as predictors for second-pass Hexagonal Search (HEXBS) motion estimation, which only searches a small number of Macroblocks (MBs). We evaluated distributed parallel implementation of LHMEA of TPA for real time video compression.
Resumo:
In this work an image pre-processing module has been developed to extract quantitative information from plantation images with various degrees of infestation. Four filters comprise this module: the first one acts on smoothness of the image, the second one removes image background enhancing plants leaves, the third filter removes isolated dots not removed by the previous filter, and the fourth one is used to highlight leaves' edges. At first the filters were tested with MATLAB, for a quick visual feedback of the filters' behavior. Then the filters were implemented in the C programming language. At last, the module as been coded in VHDL for the implementation on a Stratix II family FPGA. Tests were run and the results are shown in this paper. © 2008 Springer-Verlag Berlin Heidelberg.
Resumo:
The human dentition is naturally translucent, opalescent and fluorescent. Differences between the level of fluorescence of tooth structure and restorative materials may result in distinct metameric properties and consequently perceptible disparate esthetic behavior, which impairs the esthetic result of the restorations, frustrating both patients and staff. In this study, we evaluated the level of fluorescence of different composites (Durafill in tones A2 (Du), Charisma in tones A2 (Ch), Venus in tone A2 (Ve), Opallis enamel and dentin in tones A2 (OPD and OPE), Point 4 in tones A2 (P4), Z100 in tones A2 ( Z1), Z250 in tones A2 (Z2), Te-Econom in tones A2 (TE), Tetric Ceram in tones A2 (TC), Tetric Ceram N in tones A1, A2, A4 (TN1, TN2, TN4), Four seasons enamel and dentin in tones A2 (and 4SD 4SE), Empress Direct enamel and dentin in tones A2 (EDE and EDD) and Brilliant in tones A2 (Br)). Cylindrical specimens were prepared, coded and photographed in a standardized manner with a Canon EOS digital camera (400 ISO, 2.8 aperture and 1/ 30 speed), in a dark environment under the action of UV light (25 W). The images were analyzed with the software ScanWhite©-DMC/Darwin systems. The results showed statistical differences between the groups (p < 0.05), and between these same groups and the average fluorescence of the dentition of young (18 to 25 years) and adults (40 to 45 years) taken as control. It can be concluded that: Composites Z100, Z250 (3M ESPE) and Point 4 (Kerr) do not match with the fluorescence of human dentition and the fluorescence of the materials was found to be affected by their own tone.
Resumo:
The web services (WS) technology provides a comprehensive solution for representing, discovering, and invoking services in a wide variety of environments, including Service Oriented Architectures (SOA) and grid computing systems. At the core of WS technology lie a number of XML-based standards, such as the Simple Object Access Protocol (SOAP), that have successfully ensured WS extensibility, transparency, and interoperability. Nonetheless, there is an increasing demand to enhance WS performance, which is severely impaired by XML's verbosity. SOAP communications produce considerable network traffic, making them unfit for distributed, loosely coupled, and heterogeneous computing environments such as the open Internet. Also, they introduce higher latency and processing delays than other technologies, like Java RMI and CORBA. WS research has recently focused on SOAP performance enhancement. Many approaches build on the observation that SOAP message exchange usually involves highly similar messages (those created by the same implementation usually have the same structure, and those sent from a server to multiple clients tend to show similarities in structure and content). Similarity evaluation and differential encoding have thus emerged as SOAP performance enhancement techniques. The main idea is to identify the common parts of SOAP messages, to be processed only once, avoiding a large amount of overhead. Other approaches investigate nontraditional processor architectures, including micro-and macrolevel parallel processing solutions, so as to further increase the processing rates of SOAP/XML software toolkits. This survey paper provides a concise, yet comprehensive review of the research efforts aimed at SOAP performance enhancement. A unified view of the problem is provided, covering almost every phase of SOAP processing, ranging over message parsing, serialization, deserialization, compression, multicasting, security evaluation, and data/instruction-level processing.
Resumo:
Current commercial and academic OLAP tools do not process XML data that contains XLink. Aiming at overcoming this issue, this paper proposes an analytical system composed by LMDQL, an analytical query language. Also, the XLDM metamodel is given to model cubes of XML documents with XLink and to deal with syntactic, semantic and structural heterogeneities commonly found in XML documents. As current W3C query languages for navigating in XML documents do not support XLink, XLPath is discussed in this article to provide features for the LMDQL query processing. A prototype system enabling the analytical processing of XML documents that use XLink is also detailed. This prototype includes a driver, named sql2xquery, which performs the mapping of SQL queries into XQuery. To validate the proposed system, a case study and its performance evaluation are presented to analyze the impact of analytical processing over XML/XLink documents.
Resumo:
Current scientific applications have been producing large amounts of data. The processing, handling and analysis of such data require large-scale computing infrastructures such as clusters and grids. In this area, studies aim at improving the performance of data-intensive applications by optimizing data accesses. In order to achieve this goal, distributed storage systems have been considering techniques of data replication, migration, distribution, and access parallelism. However, the main drawback of those studies is that they do not take into account application behavior to perform data access optimization. This limitation motivated this paper which applies strategies to support the online prediction of application behavior in order to optimize data access operations on distributed systems, without requiring any information on past executions. In order to accomplish such a goal, this approach organizes application behaviors as time series and, then, analyzes and classifies those series according to their properties. By knowing properties, the approach selects modeling techniques to represent series and perform predictions, which are, later on, used to optimize data access operations. This new approach was implemented and evaluated using the OptorSim simulator, sponsored by the LHC-CERN project and widely employed by the scientific community. Experiments confirm this new approach reduces application execution time in about 50 percent, specially when handling large amounts of data.
Resumo:
In this paper, we investigate content-centric data transmission in the context of short opportunistic contacts and base our work on an existing content-centric networking architecture. In case of short interconnection times, file transfers may not be completed and the received information is discarded. Caches in content-centric networks are used for short-term storage and do not guarantee persistence. We implemented a mechanism to extend caching on persistent storage enabling the completion of disrupted content transfers. The mechanisms have been implemented in the CCNx framework and have been evaluated on wireless mesh nodes. Our evaluations using multicast and unicast communication show that the implementation can support content transfers in opportunistic environments without significant processing and storing overhead.
Resumo:
Recognizing the increasing amount of information shared on Social Networking Sites (SNS), in this study we aim to explore the information processing strategies of users on Facebook. Specifically, we aim to investigate the impact of various factors on user attitudes towards the posts on their Newsfeed. To collect the data, we program a Facebook application that allows users to evaluate posts in real time. Applying Structural Equation Modeling to a sample of 857 observations we find that it is mostly the affective attitude that shapes user behavior on the network. This attitude, in turn, is mainly determined by the communication intensity between users, overriding comprehensibility of the post and almost neglecting post length and user posting frequency.
Resumo:
In this paper we present BitWorker, a platform for community distributed computing based on BitTorrent. Any splittable task can be easily specified by a user in a meta-information task file, such that it can be downloaded and performed by other volunteers. Peers find each other using Distributed Hash Tables, download existing results, and compute missing ones. Unlike existing distributed computing schemes relying on centralized coordination point(s), our scheme is totally distributed, therefore, highly robust. We evaluate the performance of BitWorker using mathematical models and real tests, showing processing and robustness gains. BitWorker is available for download and use by the community.
Resumo:
This paper presents a shallow dialogue analysis model, aimed at human-human dialogues in the context of staff or business meetings. Four components of the model are defined, and several machine learning techniques are used to extract features from dialogue transcripts: maximum entropy classifiers for dialogue acts, latent semantic analysis for topic segmentation, or decision tree classifiers for discourse markers. A rule-based approach is proposed for solving cross-modal references to meeting documents. The methods are trained and evaluated thanks to a common data set and annotation format. The integration of the components into an automated shallow dialogue parser opens the way to multimodal meeting processing and retrieval applications.
Resumo:
OntoTag - A Linguistic and Ontological Annotation Model Suitable for the Semantic Web
1. INTRODUCTION. LINGUISTIC TOOLS AND ANNOTATIONS: THEIR LIGHTS AND SHADOWS
Computational Linguistics is already a consolidated research area. It builds upon the results of other two major ones, namely Linguistics and Computer Science and Engineering, and it aims at developing computational models of human language (or natural language, as it is termed in this area). Possibly, its most well-known applications are the different tools developed so far for processing human language, such as machine translation systems and speech recognizers or dictation programs.
These tools for processing human language are commonly referred to as linguistic tools. Apart from the examples mentioned above, there are also other types of linguistic tools that perhaps are not so well-known, but on which most of the other applications of Computational Linguistics are built. These other types of linguistic tools comprise POS taggers, natural language parsers and semantic taggers, amongst others. All of them can be termed linguistic annotation tools.
Linguistic annotation tools are important assets. In fact, POS and semantic taggers (and, to a lesser extent, also natural language parsers) have become critical resources for the computer applications that process natural language. Hence, any computer application that has to analyse a text automatically and ‘intelligently’ will include at least a module for POS tagging. The more an application needs to ‘understand’ the meaning of the text it processes, the more linguistic tools and/or modules it will incorporate and integrate.
However, linguistic annotation tools have still some limitations, which can be summarised as follows:
1. Normally, they perform annotations only at a certain linguistic level (that is, Morphology, Syntax, Semantics, etc.).
2. They usually introduce a certain rate of errors and ambiguities when tagging. This error rate ranges from 10 percent up to 50 percent of the units annotated for unrestricted, general texts.
3. Their annotations are most frequently formulated in terms of an annotation schema designed and implemented ad hoc.
A priori, it seems that the interoperation and the integration of several linguistic tools into an appropriate software architecture could most likely solve the limitations stated in (1). Besides, integrating several linguistic annotation tools and making them interoperate could also minimise the limitation stated in (2). Nevertheless, in the latter case, all these tools should produce annotations for a common level, which would have to be combined in order to correct their corresponding errors and inaccuracies. Yet, the limitation stated in (3) prevents both types of integration and interoperation from being easily achieved.
In addition, most high-level annotation tools rely on other lower-level annotation tools and their outputs to generate their own ones. For example, sense-tagging tools (operating at the semantic level) often use POS taggers (operating at a lower level, i.e., the morphosyntactic) to identify the grammatical category of the word or lexical unit they are annotating. Accordingly, if a faulty or inaccurate low-level annotation tool is to be used by other higher-level one in its process, the errors and inaccuracies of the former should be minimised in advance. Otherwise, these errors and inaccuracies would be transferred to (and even magnified in) the annotations of the high-level annotation tool.
Therefore, it would be quite useful to find a way to
(i) correct or, at least, reduce the errors and the inaccuracies of lower-level linguistic tools;
(ii) unify the annotation schemas of different linguistic annotation tools or, more generally speaking, make these tools (as well as their annotations) interoperate.
Clearly, solving (i) and (ii) should ease the automatic annotation of web pages by means of linguistic tools, and their transformation into Semantic Web pages (Berners-Lee, Hendler and Lassila, 2001). Yet, as stated above, (ii) is a type of interoperability problem. There again, ontologies (Gruber, 1993; Borst, 1997) have been successfully applied thus far to solve several interoperability problems. Hence, ontologies should help solve also the problems and limitations of linguistic annotation tools aforementioned.
Thus, to summarise, the main aim of the present work was to combine somehow these separated approaches, mechanisms and tools for annotation from Linguistics and Ontological Engineering (and the Semantic Web) in a sort of hybrid (linguistic and ontological) annotation model, suitable for both areas. This hybrid (semantic) annotation model should (a) benefit from the advances, models, techniques, mechanisms and tools of these two areas; (b) minimise (and even solve, when possible) some of the problems found in each of them; and (c) be suitable for the Semantic Web. The concrete goals that helped attain this aim are presented in the following section.
2. GOALS OF THE PRESENT WORK
As mentioned above, the main goal of this work was to specify a hybrid (that is, linguistically-motivated and ontology-based) model of annotation suitable for the Semantic Web (i.e. it had to produce a semantic annotation of web page contents). This entailed that the tags included in the annotations of the model had to (1) represent linguistic concepts (or linguistic categories, as they are termed in ISO/DCR (2008)), in order for this model to be linguistically-motivated; (2) be ontological terms (i.e., use an ontological vocabulary), in order for the model to be ontology-based; and (3) be structured (linked) as a collection of ontology-based