768 resultados para Fibres végétales
Resumo:
Tese de Doutoramento em Engenharia Química e Biológica (área de conhecimento em Engenharia Enzimática e das Fermentações)
Resumo:
Identification of the tensile constitutive behaviour of Fibre Reinforced Concrete (FRC) represents an important aspect of the design of structural elements using this material. Although an important step has been made with the introduction of guidance for the design with regular FRC in the recently published fib Model Code 2010, a better understanding of the behaviour of this material is still necessary, mainly for that with self-compacting properties. This work presents an experimental investigation employing Steel Fibre Self-Compacting Concrete (SFRSCC) to cast thin structural elements. A new test method is proposed for assessing the post-cracking behaviour and the results obtained with the proposed test method are compared with the ones resulted from the standard three-point bending tests (3PBT). Specimens extracted from a sandwich panel consisting of SFRSCC layers are also tested. The mechanical properties of SFRSCC are correlated to the fibre distribution by analysing the results obtained with the different tests. Finally, the stress-crack width constitutive law proposed by the fib Model Code 2010 is analysed in light of the experimental results.
Resumo:
In the last few years, many reports have been describing promising biocompatible and biodegradable materials that can mimic in a certain extent the multidimensional hierarchical structure of bone, while are also capable of releasing bioactive agents or drugs in a controlled manner. Despite these great advances, new developments in the design and fabrication technologies are required to address the need to engineer suitable biomimetic materials in order tune cells functions, i.e. enhance cell-biomaterial interactions, and promote cell adhesion, proliferation, and differentiation ability. Scaffolds, hydrogels, fibres and composite materials are the most commonly used as biomimetics for bone tissue engineering. Dynamic systems such as bioreactors have also been attracting great deal of attention as it allows developing a wide range of novel in vitro strategies for the homogeneous coating of scaffolds and prosthesis with ceramics, and production of biomimetic constructs, prior its implantation in the body. Herein, it is overviewed the biomimetic strategies for bone tissue engineering, recent developments and future trends. Conventional and more recent processing methodologies are also described.
Resumo:
Degree of Doctor of Philosophy of Structural/Civil Engineering
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Tese de Doutoramento em Ciências (área de especialização em Química)
Resumo:
Fundação para a Ciência e a Tecnologia, Grant SFRH/BPD/46515/2008. Jiajia Fu acknowledges the support of Jiangsu Provincial Natural Science Foundation of China (No. BK2012112) and the National Natural Science Foundation of China under Grant No. 3120113
Resumo:
Bacterial cellulose (BC) films from two distinct sources (obtained by static culture with Gluconacetobacter xylinus ATCC 53582 (BC1) and from a commercial source (BC2)) were modified by bovine lactoferrin (bLF) adsorption. The functionalized films (BC+bLF) were assessed as edible antimicrobial packaging, for use in direct contact with highly perishable foods, specifically fresh sausage as a model of meat products. BC+bLF films and sausage casings were characterized regarding their water vapour permeability (WVP), mechanical properties, and bactericidal efficiency against two food pathogens, Escherichia coli and Staphylococcus aureus. Considering their edibility, an in vitro gastrointestinal tract model was used to study the changes occurring in the BC films during passage through the gastrointestinal tract. Moreover, the cytotoxicity of the BC films against 3T3 mouse embryo fibroblasts was evaluated. BC1 and BC2 showed equivalent density, WVP and maximum tensile strength. The percentage of bactericidal efficiency of BC1 and BC2 with adsorbed bLF (BC1+bLF and BC2+bLF, respectively) in the standalone films and in inoculated fresh sausages, was similar against E. coli (mean reduction 69 % in the films per se versus 94 % in the sausages) and S. aureus (mean reduction 97 % in the films per se versus 36 % in the case sausages). Moreover, the BC1+bLF and BC2+bLF films significantly hindered the specific growth rate of both bacteria. Finally, no relevant cytotoxicity against 3T3 fibroblasts was found for the films before and after the simulated digestion. BC films with adsorbed bLF may constitute an approach in the development of bio-based edible antimicrobial packaging systems.
Resumo:
A more or less detailed study of the spermatogenesis in six species of Hemiptera belonging to the Coreid Family is made in the present paper. The species studied and their respective chromosome numbers were: 1) Diactor bilineatus (Fabr.) : spermatogonia with 20 + X, primary spermatocytes with 10 + X, X dividing equationaliv in the first division and passing undivided to one pole in the second. 2) Lcptoglossus gonagra (Fabr.) : spermatogonia with 20 + X, primary spermatocytes with 10 + X, X dividing equationally in the first division and passing undivided to one pole in the second. 3) Phthia picta (Drury) : spermatogonia with 20 + X, primary spermatocytes with 10 + X, X dividing equationally in the first division and passing undivided to one pole in the second. 4) Anisocelis foliacea Fabr. : spermatogonia with 26 + X fthe highest mumber hitherto known in the Family), primary .spermatocytes with 13 + X, X dividing equationally in the first division an passing undivided to one pole in the second. 5) Pachylis pharaonis (Herbtst) : spermatogonia with 16 + X, primary spermatocytes with 8 + X. Behaviour of the heteroehromosome not referred. 6) Pachylis laticornis (Fabr.) : spermatogonia with 14 + X, primary spermatocytes with 7 + X, X passing undivided to one pole in the first division and therefore secondary spermatocytes with 7 + X and 7 chromosomes. General results and conclusions a) Pairing modus of the chromosomes (Telosynapsis or Farasynapsis ?) - In several species of the Coreld bugs the history of the chromosomes from the diffuse stage till diakinesis cannot be follewed in detail due specially to the fact that lhe bivalents, as soon as they begin to be individually distinct they appear as irregular and extremely lax chromatic areas, which through an obscure process give rise to the diakinesis and then to the metaphase chomosomes. Fortunately I was able to analyse the genesis of the cross-shaped chromosomes, becoming thus convinced that even in the less favorable cases like that of Phthia, in which the crosses develop from four small condensation areas of the diffuse chromosomes, nothing in the process permit to interpret the final results as being due to a previous telosynaptic pairing. In the case of long bivalents formed by two parallel strands intimately united at both endsegments and more or less widely open in the middle (Leptoglossus, Pachylis), I could see that the lateral arms of the crosses originate from condensation centers created by a torsion or bending in the unpaired parts of the chromosomes In the relatively short bivalents the lateral branches of the cross are formed in the middle but in the long ones, whose median opening is sometimes considerable, two asymetrical branches or even two independent crosses may develop in the same pair. These observations put away the idea of an end-to-end pairing of the chromosomes, since if it had occured the lateral arms of the crosses would always be symetrical and median and never more than two. The direct observation of a side- toside pairing of the chromosomal threads at synizesis, is in foil agreement with the complete lack of evidence in favour of telosynapsis. b) Anaphasic bridges and interzonal connections - The chromosomes as they separate from each other in anaphase they remain connected by means of two lateral strands corresponding to the unpaired segmenas observed in the bivalents at the stages preceding metaphase. In the early anaphase the chromosomes again reproduce the form they had in late diafcinesis. The connecting threads which may be thick and intensely coloured are generally curved and sometimes unequal in lenght, one being much longer than the other and forming a loop outwardly. This fact points to a continuous flow of chromosomal substance independently from both chromosomes of the pair rather than to a mechanical stretching of a sticky substance. At the end of anaphase almost all the material which formed the bridges is reduced to two small cones from whose vertices a very fine and pale fibril takes its origin. The interzonal fibres, therefore, may be considered as the remnant of the anaphasic bridges. Abnormal behaviour of the anaphase chromosomes showed to be useful in aiding the interpretation of normal aspects. It has been suggested by Schrader (1944) "that the interzonal is nothing more than a sticky coating of the chromosome which is stretched like mucilage between the daughter chromosomes as they move further and further apart". The paired chromosomes being enclosed in a commom sheath, as they separate they give origin to a tube which becomes more and more stretched. Later the walls of the tube collapse forming in this manner an interzonal element. My observations, however, do not confirm Schrader's tubular theory of interzonal connections. In the aspects seen at anaphase of the primary spermatocytes and described in this paper as chromosomal bridges nothing suggests a tubular structure. There is no doubt that the chromosomes are here connected by two independent strands in the first division of the spermatocytes and by a single one in the second. The manner in which the chromosomes separate supports the idea of transverse divion, leaving little place for another interpretation. c) Ptafanoeomc and chromatoid bodies - The colourabtlity of the plasmosome in Diactor and Anisocelis showed to be highly variable. In the latter species, one may find in the same cyst nuclei provided with two intensely coloured bodies, the larger of which being the plasmosome, sided by those in which only the heterochromosome took the colour. In the former one the plasmosome strongly coloured seen in the primary metaphase may easily be taken for a supernumerary chromosome. At anaphase this body stays motionless in the equator of the cell while the chromosomes are moving toward the poles. There, when intensely coloured ,it may be confused with the heterochromosome of the secondary spermatocytes, which frequently occupies identical position in the corresponding phase, thus causing missinterpretation. In its place the plasmosome may divide into two equal parts or pass undivided to one cell in whose cytoplasm it breaks down giving rise to a few corpuscles of unequal sizes. In Pachylis pharaonis, as soon as the nuclear membrane breate down, the plasmosome migrates to a place in the periphery of the cell (primary spermatocyte), forming there a large chromatoid body. This body is never found in the cytoplasm prior to the dissolution of the nuclear membrane. It is certain that chromatoid bodies of different origin do exist. Here, however, we are dealing, undoubtedly, with true plasmosomes. d) Movement of the heterochromosome - The heterochromosome in the metaphase of the secondary spermatocytes may occupy the most different places. At the time the autosomes prient themselves in the equatorial plane it may be found some distance apart in this plane or in any other plane and even in the subpolar and polar regions. It remains in its place during anaphase. Therefore, it may appear at the same level with the components of one of the anaphase plates (synchronism), between both plates (succession) or between one plate and tbe pole (precession), what depends upon the moment the cell was fixed. This does not mean that the heterochromosome sometimes moves as quickly as the autosomes, sometimes more rapidly and sometimes less. It implies, on the contrary, that, being anywhere in the cell, the heterochromosome m he attained and passed by the autosomes. In spite of being almost motionless the heterochromosome finishes by being enclosed in one of the resulting nuclei. Consequently, it does move rapidly toward the group formed by the autosomes a little before anaphase is ended. This may be understood assuming that the heterochromosome, which do not divide, having almost inactive kinetochore cannot orient itself, giving from wherever it stays, only a weak response to the polar influences. When in the equator it probably do not perform any movement in virtue of receiving equal solicitation from both poles. When in any other plane, despite the greater influence of the nearer pole, the influence of the opposite pole would permit only so a slow movement that the autosomes would soon reach it and then leave it behind. It is only when the cell begins to divide that the heterochromosome, passing to one of the daughter cells scapes the influence of the other and thence goes quickly to join the autosomes, being enclosed with them in the nucleus formed there. The exceptions observed by BORING (1907) together with ; the facts described here must represent the normal behavior of the heterocromosome of the Hemiptera, the greater frequency of succession being the consequence of the more frequent localization of the heterochromosome in the equatorial plane or in its near and of the anaphase rapidity. Due to its position in metaphase the heterochromosome in early anaphase may be found in precession. In late anaphase, oh the contrary ,it appears almost always in succession. This is attributed to the fact of the heterochromosome being ordinairily localized outside the spindle area it leaves the way free to the anaphasic plate moving toward the pole. Moreover, the heterochromosome being a round element approximately of the size of the autosomes, which are equally round or a little longer in the direction of the movement, it can be passed by the autosomes even when it stands in the area of the spindle, specially if it is not too far from the equatorial plane. e) The kinetochore - This question has been fully discussed in another paper (PIZA 1943a). The facts treated here point to the conclusion that the chromosomes of the Coreidae, like those of Tityus bahiensis, are provided with a kinetochore at each end, as was already admitted by the present writer with regard to the heterochromosome of Protenor. Indeed, taking ipr granted the facts presented in this paper, other cannot be the interpretation. However, the reasons by which the chromosomes of the species studied here do not orient themselves at metaphase of the first division in the same way as the heterochromosome of Protenor, that is, with the major axis parallelly to the equatorial plane, are claiming for explanation. But, admiting that the proximity of the kinetochores at the ends of chromosomes which do not separate until the second division making them respond to the poles as if they were a single kinetochore ,the explanation follows. (See PIZA 1943a). The median opening of the diplonemas when they are going to the diffuse stage as well as the reappearance of the bivalents always united at the end-segments and open in the middle is in full agreement with the existence of two terminal kinetochores. The same can be said with regard to the bivalents which join their extremities to form a ring.
Resumo:
In this paper an account is given of the principal facts observer in the meiosis of Euryophthalmus rufipennis Laporte which afford some evidence in favour of the view held by the present writer in earlier publications regarding the existence of two terminal kinetochores in Hem ip ter an chromosomes as well as the transverse division of the chromosomes. Spermatogonial mitosis - From the beginning of prophase until metaphase nothing worthy of special reference was observed. At anaphase, on the contrary, the behavior of the chromosomes deserves our best attention. Indeed, the chromoso- mes, as soon as they begin to move, they show both ends pronouncedly turned toward the poles to which they are connected by chromosomal fibres. So a premature and remarkable bending of the chromosomes not yet found in any other species of Hemiptera and even of Homoptera points strongly to terminally localized kinetochores. The explanation proposed by HUGHES-SCHRADER and RIS for Nautococcus and by RIS for Tamalia, whose chromosomes first become bent late in anaphase do not apply to chromosomes which initiate anaphase movement already turned toward the corresponding pole. In the other hand, the variety of positions assumed by the anaphase chromosomes of Euryophthalmus with regard to one another speaks conclusively against the idea of diffuse spindle attachments. First meiotic division - Corresponding to the beginning of the story of the primary spermatocytes cells are found with the nucleus entirelly filled with leptonema threads. Nuclei with thin and thick threads have been considered as being in the zygotente phase. At the pachytene stage the bivalents are formed by two parallel strands clearly separated by a narrow space. The preceding phases differ in nothing from the corresponding orthodox ones, pairing being undoubtedly of the parasynaptic type. Formation of tetrads - When the nuclei coming from the diffuse stage can be again understood the chromosomes reappear as thick threads formed by two filaments intimately united except for a short median segment. Becoming progressively shorter and thicker the bivalents sometimes unite their extremities forming ring-shaped figures. Generally, however, this does not happen and the bivalents give origin to more or less condensed characteristic Hemipteran tetrads, bent at the weak median region. The lateral duplicity of the tetrads is evident. At metaphase the tetrads are still bent and are connected with both poles by their ends. The ring-shaped diakinesis tetrads open themselves out before metaphase, showing in this way that were not chiasmata that held their ends together. Anaphase proceeds as expected. If we consider the median region of the tetrads as being terminalized chiasmata, then the chromosomes are provided with a single terminal kinetochore. But this it not the case. A critical analysis of the story of the bivalents before and after the diffuse stage points to the conclusion that they are continuous throughout their whole length. Thence the chromosomes are considered as having a kinetochore at each end. Orientation - There are some evidences that Hemipteran chromosomes are connected by chiasmata. If this is true, the orientation of the tetrads may be understood in the following manner: Chiasmata being hindered to scape by the terminal kinetochores accumulate at the ends of the tetrads, where condensation begins. Repulsion at the centric ends being prevented by chiasmata the tetrads orient themselves as if they were provided with a single kinetochore at each extremity, taking a position parallelly to the spindle axis. Anaphase separation - Anaphase separation is consequently due to a transverse division of the chromosomes. Telophase and secund meiotic division - At telophase the kinetochore repeli one another following the moving apart of the centosomes, the chiasmata slip toward the acentric extremities and the chromosomes rotate in order to arrange themselves parallelly to the axis of the new spindle. Separation is therefore throughout the pairing plane. Origin of the dicentricity of the chromosomes - Dicentricity of the chromosomes is ascribed to the division of the kinetochore of the chromosomes reaching the poles followed by separation and distension of the chromatids which remain fused at the acentric ends giving thus origin to terminally dicentric iso-chromosomes. Thence, the transverse division of the chromosomes, that is, a division through a plane perpendicular to the plane of pairing, actually corresponds to a longitudinal division realized in the preceding generation. Inactive and active kinetochores - Chromosomes carrying inactive kinetochore is not capable of orientation and active anaphasic movements. The heterochromosome of Diactor bilineatus in the division of the secondary spermatocytes is justly in this case, standing without fibrilar connection with the poles anywhere in the cell, while the autosomes are moving regularly. The heterochromosome of Euryophthalmus, on the contrary, having its kinetochores perfectly active ,is correctly oriented in the plane of the equator together with the autosomes and shows terminal chromosomal connection with both poles. Being attracted with equal strength by two opposite poles it cannot decide to the one way or the other remaining motionless in the equator until some secondary causes (as for instances a slight functional difference between the kinetochores) intervene to break the state of equilibrium. When Yiothing interferes to aide the heterochromosome in choosing its way it distends itself between the autosomal plates forming a fusiform bridge which sometimes finishes by being broken. Ordinarily, however, the bulky part of the heterochromosome passes to one pole. Spindle fibers and kinetic activity of chromosomal fragments - The kinetochore is considered as the unique part of the chromosome capable of being influenced by other kinetochore or by the poles. Under such influence the kinetochore would be stimulated or activited and would elaborate a sort of impulse which would run toward the ends. In this respect the chromosome may be compared to a neüròn, the cell being represented by the kinetochore and the axon by the body of the chromosome. Due to the action of the kinetochore the entire chromosome becomes also activated for performing its kinetic function. Nothing is known at present about the nature of this activation. We can however assume that some active chemical substance like those produced by the neuron and transferred to the effector passes from the kinetochore to the body of the chromosome runing down to the ends. And, like an axon which continues to transmit an impulse after the stimulating agent has suspended its action, so may the chromosome show some residual kinetic activity even after having lost its kinetochore. This is another explanation for the kinetic behavior of acentric chromosomal fragmehs. In the orthodox monocentric chromosomes the kinetic activity is greater at the kinetochore, that is, at the place of origin of the active substance than at any other place. In chromosomes provided with a kinetochore at each end the entire body may become active enough to produce chromosomal fibers. This is probably due to a more or less uniform distribution and concentration of the active substance coming simultaneously from both extremities of the chromosome.
Resumo:
Three species of Scorpions beloging to two different families were studied cytologically: a) Tityus mattogrossensis Borelli (Fam. Buthidae), - This species presents spermatogonia provided with 20 short chromosomes which orient at metaphase with their axis parallelly to the plane of the equator and move toward the poles without changing this position, from the stage pachytene to metaphase the bivalents become, as in Tityus bahiensis, progressivery shorter and thicker, without showing that chiasmata occured at any time. The paired chromosomes never open themselves, out to form loops as in orthodox meioses. As in Tityus bahiensis the bivalents are inserted In the spindle before reaching their maxim contraction. No diakinesis has been observed. The primary spermatocyte metaphases are provided, with 10 pairs of chromosones, two of which are larger and two smaller than the rest. The bivalents orient as in Tityus bahiensis with their length in the plane of the equator and separate parallelly. Spindle fibres are seen alongst their entire body. While, in Tityus bahiensis the ends of the chromosomes are pronouncedly turned to opposite poles at metaphase, nothing like this was observed in the present species. Only late in anaphase the chromosomes of Tityus mattogrossensis show a bending to the poles. The secondary spermatocytes present 10 short chromosomes, two being larger than, the others. Here, on the contrary, the chromosomes are strongly curved toward the poles since the beginning of anaphase. Some chromosomal anomalies have been noticed. Primary spermatocytes with 14 bivalents, some of which representing probably free fragments, were observed. Primary spermatocytes with 8 bivalents and one cross of 4 chromosomes were interpreted as resulting from breakages followed by translocations Primary spermatocytes with 9 bivalents, one of which being much longer than the longst of the normal plates, show that fusion by the extremities of two non homologous chromosomes on the onde side, and of their respective homologous in the same way on tre other, have occured. Orientation of bivalents with their body parallelly to the spindle axis and anaphasic bridges have been encountered. All in all points to the conclusion that the chromosomes of Tityus mattogrossesis, like those of Tityus bahiensia are provided with one kinetochore at each end. Ananteris balzani Thorell - (Fam. Buthidae). - This species which belongs to the same family as Tityus, is provided with 12 chromosomes (diploid). These studied in embryonic tissues, showed the same behavior as the somatic chromosomes of Tityus bahiensis. Bothrirus sp. (Bothriuridae). - Only spermatogonia were found in the testis, of the single male hitherto investigated. The chromosomes, in number of 36, are of different sizes but small and provided, as ordinarily, with a single kinetochore. They behave therefore in an orthodox manner in mitosis.
Resumo:
The aims of this project was to develop an arterial aneurysm using either enzymatic or laser degradation of the arterial wall without affecting the viability of the tissue and to cultivate the arteries under pulsatile flow conditions in a vascular bioreactor with a view to investigate the progress of the disease. Characteristics of aneurysms are the degradation of smooth muscle cells, collagen and elastin. Detached smooth muscle cells and degradation of the collagen matrix and elastin fibres were observed in arteries degraded with enzymes elastase and collagenase. Only remnants of the arterial wall were detected after cultivation. This might be a suitable model for late stage aneurysms. Arteries treated with the laser system showed no charring or heat damage of the not dissected area. Collagen matrix, smooth muscle cells and elastin fibres were intact. A clear defined cut was made in a depth of 200 μm and tissue was removed. Following cultivation of these arteries a dilation of the laser-eroded area was observed. This model can mimic atherosclerotic aneurysms, when plaques weaken the tunica media of the blood vessel wall and rupture. Limitations of this study were contamination of the bioreactor system and a low number of cultivations. The aim to generate a living arterial aneurysm in vitro was not achieved. Tissue viability decreased to the level of negative controls after cultivation.
Resumo:
The writers describe the muscular texture of the proglottides of Taenia saginata, Goeze, 1782, based upon microscopical preparations of mature and gravid proglottides stained by several methods. The muscular system of the proglottides of Taenia saginata is disposed mainly in two layers, a longitudinal and external one, and a deeper transverse layer, lining the body parenchym and internal organs. A circular or annular layer ranging under the cuticle is also referred. The writers emphasize the peculiar texture of the smooth muscle fibres, which only excepcionally do exist as isolated fibres, anastomosis between the fibres being the common histological appearence. Special features of the body parenchym such as calcareous bodies and globous nuclea scattered in the parenchym are also described.
Resumo:
Els teixits de llana presenten l’inconvenient de feltrar (encongir) degut a la presència d’escates i a les característiques hidrofòbiques de la seva superfície. Els tractaments amb plasma (gas ionitzat) són una alternativa ecològica als tractaments tradicionals d’anti feltratge de la llana. També són una innovació en el camp de les fibres sintètiques ja que incrementen la hidrofìlia i/o la rugositat. Malgrat les seves avantatges, l’elevat cost de la maquinària de plasma de baixa temperatura existent per a la indústria tèxtil ha frenat la seva aplicació. Basant-se en estudis preliminars, s’ha avaluat l’efecte de la post-descàrrega del plasma sobre l’encongiment dels teixits de llana, així com els seus efectes en la modificació de la morfologia superficial de llana i poliamida 6.
Resumo:
A sample of about 70 young bulls of each of ten beef cattle breeds reared in their typical production systems has been characterised with respect to meat quality traits. Breeds included were Asturiana de los Valles, Asturiana de la Montaña, Avileña-Negra Ibérica, Bruna dels Pirineus, Morucha, Pirenaica and Retinta from Spain, and Aubrac, Gasconne and Salers from France. As was previously showed regarding carcass traits, there exist large differences both between and within breed – systems. In general, rustic breeds tended to present darker and redder meats with higher haematin contents, whereas less precocious and more specialised breeds showed brighter meats with bigger water losses. Protein content was similar, whereas intramuscular fat presented the larger variations both between and within breeds. ICDH content was higher in the more rustic breeds, showing the predominantly oxidative character of their fibres. Texture measurements showed in general large within breed-system variations, the differences between breeds being less evident. Within breed-system, daily gain weight was positively associated with brighter and tender meats. In the range studied, increasing slaughter weight within breed did not have influence on meat quality. Conformation was related to lower water holding capacity and less dry matter and intramuscular fat, as well as to a lower haematin content giving brighter meats. The increase in fatness scores was related to an augment of toughness in meat specialised breeds, although in Avileña-Negra Ibérica breed fatness carcasses were related to more tender meats. Redness parameter a* was positively related to fatter animals and opposed to conformation, the opposite being true for the L* (lightness) parameter. There was a small trend of fatter carcasses to be related to oxidative fibres, whereas the muscular fibres of the more conformed carcasses were more glycolytic. Texture measurements maximum load, maximum stress and toughness were very closely related. Shear force was opposed to tenderness. Losses at cooking were opposed to juiciness, but only in the Spanish breeds. No consistent trends regarding relationships between carcass characteristics and tenderness could be observed. Overall acceptability was primarily related with tenderness and flavour, and later on juiciness.