797 resultados para Fermi accleration


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graphene is in the focus of research due to its unique electronic and optical properties. Intrinsic graphene is a zero gap semiconductor with a linear dispersion relation for E-k leading to zero-effective-mass electrons and holes described by Fermi-Dirac theory. Since pristine graphene has no bandgap no photoluminescence would be expected. However, recently several groups showed non-linear photoluminescence from pristine graphene putting forward different physical models explaining this remarkable effect [1-3]. © 2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Chinese Tam-Tam exhibits non-linear behavior in its vibro-acoustic response. The frequency content of the response during free, unforced vibration smoothly changes, with energy being progressively smeared out over a greater bandwidth with time. This is used as a motivating case for the general study of the phenomenon of energy cascading through weak nonlinearity. Numerical models based upon the Fermi-Pasta-Ulam system of non-linearly coupled oscillators, modified with the addition of damping, have been developed. These were used to study the response of ensembles of systems with randomized natural frequencies. Results from simulations will be presented here. For un-damped systems, individual ensemble members exhibit cyclical energy exchange between linear modes, but the ensemble average displays a steady state. For the ensemble response of damped systems, lightly damped modes can exhibit an effective damping which is higher than predicated by linear theory. The presence of a non-linearity provides a path for energy flow to other modes, increasing the apparent damping spectrum at some frequencies and reducing it at others. The target of this work is a model revealing the governing parameters of a generic system of this type and leading to predictions of the ensemble response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Breather stability and longevity in thermally relaxing nonlinear arrays is investigated under the scrutiny of the analysis and tools employed for time series and state reconstruction of a dynamical system. We briefly review the methods used in the analysis and characterize a breather in terms of the results obtained with such methods. Our present work focuses on spontaneously appearing breathers in thermal Fermi-Pasta-Ulam arrays but we believe that the conclusions are general enough to describe many other related situations; the particular case described in detail is presented as another example of systems where three incommensurable frequencies dominate their chaotic dynamics (reminiscent of the Ruelle-Takens scenario for the appearance of chaotic behavior in nonlinear systems). This characterization may also be of great help for the discovery of breathers in experimental situations where the temporal evolution of a local variable (like the site energy) is the only available/measured data. © 2005 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report selective tunnelling through a nanographene intermolecular tunnel junction achieved via scanning tunnelling microscope tip functionalization with hexa-peri-hexabenzocoronene (HBC) molecules. This leads to an offset in the alignment between the energy levels of the tip and the molecular assembly, resulting in the imaging of a variety of distinct charge density patterns in the HBC assembly, not attainable using a bare metallic tip. Different tunnelling channels can be selected by the application of an electric field in the tunnelling junction, which changes the condition of the HBC on the tip. Density functional theory-based calculations relate the imaged HBC patterns to the calculated molecular orbitals at certain energy levels. These patterns bear a close resemblance to the π-orbital states of the HBC molecule calculated at the relevant energy levels, mainly below the Fermi energy of HBC. This correlation demonstrates the ability of an HBC functionalized tip as regards accessing an energy range that is restricted to the usual operating bias range around the Fermi energy with a normal metallic tip at room temperature. Apart from relating to molecular orbitals, some patterns could also be described in association with the Clar aromatic sextet formula. Our observations may help pave the way towards the possibility of controlling charge transport between organic interfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present electronically controlled field emission characteristics of arrays of individually ballasted carbon nanotubes synthesized by plasma-enhanced chemical vapor deposition on silicon-on-insulator substrates. By adjusting the source-drain potential we have demonstrated the ability to controllable limit the emission current density by more than 1 order of magnitude. Dynamic control over both the turn-on electric field and field enhancement factor have been noted. A hot electron model is presented. The ballasted nanotubes are populated with hot electrons due to the highly crystalline Si channel and the high local electric field at the nanotube base. This positively shifts the Fermi level and results in a broad energy distribution about this mean, compared to the narrow spread, lower energy thermalized electron population in standard metallic emitters. The proposed vertically aligned carbon nanotube field-emitting electron source offers a viable platform for X-ray emitters and displays applications that require accurate and highly stable control over the emission characteristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graphene exhibits electrical and optical properties promising for future applications in ultra-fast photonics[1]. High carrier mobility and Fermi velocity[2, 3] combined with its constant absorption over the visible wavelength range to the near-infrared[4] potentially allow its application for photodetection over a broad wavelength spectrum, operating at high frequencies. However, absorption being 2.3% per monolayer[4], responsiv-ity of these devices is rather low[5, 6]. Here we show that by combining graphene-based photodetectors with metal-nanostructures, plasmonic effects lead to an increased respon-sivity. © 2011 by the Author(s); licensee Accademia Peloritana dei Pericolanti, Messina, Italy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The composition of amorphous oxide semiconductors, which are well known for their optical transparency, can be tailored to enhance their absorption and induce photoconductivity for irradiation with green, and shorter wavelength light. In principle, amorphous oxide semiconductor-based thin-film photoconductors could hence be applied as photosensors. However, their photoconductivity persists for hours after illumination has been removed, which severely degrades the response time and the frame rate of oxide-based sensor arrays. We have solved the problem of persistent photoconductivity (PPC) by developing a gated amorphous oxide semiconductor photo thin-film transistor (photo-TFT) that can provide direct control over the position of the Fermi level in the active layer. Applying a short-duration (10 ns) voltage pulse to these devices induces electron accumulation and accelerates their recombination with ionized oxygen vacancy sites, which are thought to cause PPC. We have integrated these photo-TFTs in a transparent active-matrix photosensor array that can be operated at high frame rates and that has potential applications in contact-free interactive displays. © 2012 Macmillan Publishers Limited. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We bring together two areas of terahertz (THz) technology that have benefited from recent advancements in research, i.e., graphene, a material that has plasmonic resonances in the THz frequency, and quantum cascade lasers (QCLs), a compact electrically driven unipolar source of THz radiation. We demonstrate the use of single-layer large-area graphene to indirectly modulate a THz QCL operating at 2.0 THz. By tuning the Fermi level of the graphene via a capacitively coupled backgate voltage, the optical conductivity and, hence, the THz transmission can be varied. We show that, by changing the pulsing frequency of the backgate, the THz transmission can be altered. We also show that, by varying the pulsing frequency of the backgate from tens of Hz to a few kHz, the amplitude-modulated THz signal can be switched by 15% from a low state to a high state. © 2009-2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oxygen vacancy has been inferred to be the critical defect in HfO 2, responsible for charge trapping, gate threshold voltage instability, and Fermi level pinning for high work function gates, but it has never been conclusively identified. Here, the electron spin resonance g tensor parameters of the oxygen vacancy are calculated, using methods that do not over-estimate the delocalization of the defect wave function, to be g xx = 1.918, g yy = 1.926, g zz = 1.944, and are consistent with an observed spectrum. The defect undergoes a symmetry lowering polaron distortion to be localized mainly on a single adjacent Hf ion. © 2012 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Band alignment of resistive random access memory (RRAM) switching material Ta2O5 and different metal electrode materials was examined using high-resolution X-ray photoelectron spectroscopy. Schottky and hole barrier heights at the interface between electrode and Ta2O 5 were obtained, where the electrodes consist of materials with low to high work function (Φ m, v a c from 4.06 to 5.93 eV). Effective metal work functions were extracted to study the Fermi level pinning effect and to discuss the dominant conduction mechanism. An accurate band alignment between electrodes and Ta2O5 is obtained and can be used for RRAM electrode engineering and conduction mechanism study. © 2013 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we investigated non-ideal characteristics of a diamond Schottky barrier diode with Molybdenum (Mo) Schottky metal fabricated by Microwave Plasma Chemical Vapour Deposition (MPCVD) technique. Extraction from forward bias I-V and reverse bias C- 2-V measurements yields ideality factor of 1.3, Schottky barrier height of 1.872 eV, and on-resistance of 32.63 mö·cm2. The deviation of extracted Schottky barrier height from an ideal value of 2.24 eV (considering Mo workfunction of 4.53 eV) indicates Fermi level pinning at the interface. We attributed such non-ideal behavior to the existence of thin interfacial layer and interface states between metal and diamond which forms Metal-Interfacial layer-Semiconductor (MIS) structure. Oxygen surface treatment during fabrication process might have induced them. From forward bias C-V characteristics, the minimum thickness of the interfacial layer is approximately 0.248 nm. Energy distribution profile of the interface state density is then evaluated from the forward bias I-V characteristics based on the MIS model. The interface state density is found to be uniformly distributed with values around 1013 eV - 1·cm- 2. © 2013 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to the Fermi-Dirac statistics of electrons the temporal correlations of tunneling events in a double barrier setup are typically negative. Here, we investigate the shot noise behavior of a system of two capacitively coupled quantum dot states by means of a Master equation model. In an asymmetric setup positive correlations in the tunneling current can arise due to the bunching of tunneling events. The underlying mechanism will be discussed in detail in terms of the current-current correlation function and the frequency-dependent Fano factor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ultrafast charge carrier dynamics in GaAs/conjugated polymer type II heterojunctions are investigated using time-resolved photoluminescence spectroscopy at 10 K. By probing the photoluminescence at the band edge of GaAs, we observe strong carrier lifetime enhancement for nanowires blended with semiconducting polymers. The enhancement is found to depend crucially on the ionization potential of the polymers with respect to the Fermi energy level at the surface of the GaAs nanowires. We attribute these effects to electron doping by the polymer which reduces the unsaturated surface-state density in GaAs. We find that when the surface of nanowires is terminated by native oxide, the electron injection across the interface is greatly reduced and such surface doping is absent. Our results suggest that surface engineering via π-conjugated polymers can substantially improve the carrier lifetime in nanowire hybrid heterojunctions with applications in photovoltaics and nanoscale photodetectors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graphene is emerging as a viable alternative to conventional optoelectronic, plasmonic and nanophotonic materials. The interaction of light with charge carriers creates an out-of-equilibrium distribution, which relaxes on an ultrafast timescale to a hot Fermi-Dirac distribution, that subsequently cools emitting phonons. Although the slower relaxation mechanisms have been extensively investigated, the initial stages still pose a challenge. Experimentally, they defy the resolution of most pump-probe setups, due to the extremely fast sub-100 fs carrier dynamics. Theoretically, massless Dirac fermions represent a novel many-body problem, fundamentally different from Schrödinger fermions. Here we combine pump-probe spectroscopy with a microscopic theory to investigate electron-electron interactions during the early stages of relaxation. We identify the mechanisms controlling the ultrafast dynamics, in particular the role of collinear scattering. This gives rise to Auger processes, including charge multiplication, which is key in photovoltage generation and photodetectors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fano resonances and their strong doping dependence are observed in Raman scattering of single-layer graphene (SLG). As the Fermi level is varied by a back-gate bias, the Raman G band of SLG exhibits an asymmetric line shape near the charge neutrality point as a manifestation of a Fano resonance, whereas the line shape is symmetric when the graphene sample is electron or hole doped. However, the G band of bilayer graphene (BLG) does not exhibit any Fano resonance regardless of doping. The observed Fano resonance can be interpreted as interferences between the phonon and excitonic many-body spectra in SLG. The absence of a Fano resonance in the Raman G band of BLG can be explained in the same framework since excitonic interactions are not expected in BLG. © 2013 Elsevier Ltd. All rights reserved.