999 resultados para Fecal DNA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Topoisomerase II (topo II) is a dyadic enzyme found in all eukaryotic cells. Topo II is involved in a number of cellular processes related to DNA metabolism, including DNA replication, recombination and the maintenance of genomic stability. We discovered a correlation between the development of postnatal testis and increased binding of topo IIalpha to the chromatin fraction. We used this observation to characterize DNA-binding specificity and catalytic properties of purified testis topo IIalpha. The results indicate that topo IIalpha binds a substrate containing the preferred site with greater affinity and, consequently, catalyzes the conversion of form I to form IV DNA more efficiently in contrast to substrates lacking such a site. Interestingly, topo IIalpha displayed high-affinity and cooperativity in binding to the scaffold associated region. In contrast to the preferred site, however, high-affinity binding of topo IIalpha to the scaffold-associated region failed to result in enhanced catalytic activity. Intriguingly, competition assays involving scaffold-associated region revealed an additional DNA-binding site within the dyadic topo IIalpha. These results implicate a dual role for topo IIalpha in vivo consistent with the notion that its sequestration to the chromatin might play a role in chromosome condensation and decondensation during spermatogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA topoisomerases are ubiquitous nuclear enzymes that govern the topological interconversions of DNA by transiently breaking/rejoining the phosphodiester backbone of one (type I) or both (type II) strands of the double helix. Consistent with these functions, topoisomerases play key roles in many aspects of DNA metabolism. Type II DNA topoisomerase (topo II) is vital for various nuclear processes, including DNA replication, chromosome segregation, and maintenance of chromosome structure. Topo II expression is regulated at multiple stages, including transcriptional, posttranscriptional, and posttranslational levels, by a multitude of signaling factors. Topo II is also the cellular target for a variety of clinically relevant anti-tumor drugs. Despite significant progress in our understanding of the role of topo II in diverse nuclear processes, several important aspects of topo II function, expression, and regulation are poorly understood. We have focused this review specifically on eukaryotic DNA topoisomerase II, with an emphasis on functional and regulatory characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To gain insights into inefficient allele exchange in mycobacteria, we compared homologous pairing and strand exchange reactions promoted by RecA protein of Mycobacterium tuberculosis to those of Escherichia coli RecA protein. The extent of single-stranded binding protein (SSB)-stimulated formation of joint molecules by MtRecA was similar to that of EcRecA over a wide range of pH values. In contrast, strand exchange promoted by MtRecA was inhibited around neutral pH due to the formation of DNA networks. At higher pH, MtRecA was able to overcome this constraint and, consequently, displayed optimal strand exchange activity. Order of addition experiments suggested that SSB, when added after MtRecA, was vital for strand exchange. Significantly, with shorter duplex DNA, MtRecA promoted efficient strand exchange without network formation in a pH-independent fashion. Increase in the length of duplex DNA led to incomplete strand exchange with concomitant rise in the formation of intermediates and networks in a pH-dependent manner. Treatment of purified networks with S1 nuclease liberated linear duplex DNA and products, consistent with a model in which the networks are formed by the invasion of hybrid DNA by the displaced linear single-stranded DNA. Titration of strand exchange reactions with ATP or salt distinguished a condition under which the formation of networks was blocked, but strand exchange was not significantly affected. We discuss how these results relate to inefficient allele exchange in mycobacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have used circular dichroism and structure-directed drugs to identify the role of structural features, wide and narrow grooves in particular, required for the cooperative polymerization, recognition of homologous sequences, and the formation of joint molecules promoted by recA protein. The path of cooperative polymerization of recA protein was deduced by its ability to cause quantitative displacement of distamycin from the narrow groove of duplex DNA. By contrast, methyl green bound to the wide groove was retained by the nucleoprotein filaments comprised of recA protein-DNA. Further, the mode of binding of these ligands and recA protein to DNA was confirmed by DNaseI digestion. More importantly, the formation of joint molecules was prevented by distamycin in the narrow groove while methyl green in the wide groove had no adverse effect. Intriguingly, distamycin interfered with the production of coaggregates between nucleoprotein filaments of recA protein-M13 ssDNA and naked linear M13 duplex DNA, but not with linear phi X174 duplex DNA. Thus, these data, in conjunction with molecular modeling, suggest that the narrow grooves of duplex DNA provide the fundamental framework required for the cooperative polymerization of recA protein and alignment of homologous sequences. These findings and their significance are discussed in relation to models of homologous pairing between two intertwined DNA molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The incorporation of DNA into nucleosomes and higher-order forms of chromatin in vivo creates difficulties with respect to its accessibility for cellular functions such as transcription, replication, repair and recombination. To understand the role of chromatin structure in the process of homologous recombination, we have studied the interaction of nucleoprotein filaments, comprised of RecA protein and ssDNA, with minichromosomes. Using this paradigm, we have addressed how chromatin structure affects the search for homologous DNA sequences, and attempted to distinguish between two mutually exclusive models of DNA-DNA pairing mechanisms. Paradoxically, we found that the search for homologous sequences, as monitored by unwinding of homologous or heterologous duplex DNA, was facilitated by nucleosomes, with no discernible effect on homologous pairing. More importantly, unwinding of minichromosomes required the interaction of nucleoprotein filaments and led to the accumulation of circular duplex DNA sensitive to nuclease P1. Competition experiments indicated that chromatin templates and naked DNA served as equally efficient targets for homologous pairing. These and other findings suggest that nucleosomes do not impede but rather facilitate the search for homologous sequences and establish, in accordance with one proposed model, that unwinding of duplex DNA precedes alignment of homologous sequences at the level of chromatin. The potential application of this model to investigate the role of chromosomal proteins in the alignment of homologous sequences in the context of cellular recombination is considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have used circular dichroism as a probe to characterize the solution conformational changes in RecA protein upon binding to DNA. This approach revealed that RecA protein acquires significant amounts of alpha-helix upon interaction with DNA. These observations, consistent with the data from crystal structure (Story, R. M., Weber, I., and Steitz, T. (1992) Nature 355, 318-325), support the notion that some basic domains including the DNA binding motifs of RecA protein are unstructured and might contribute to the formation of alpha-helix. A comparison of nucleoprotein filaments comprised of RecA protein and a variety of DNA substrates revealed important structural heterogeneity. The most significant difference was observed with poly(dG). poly(dC) and related polymers, rich in GC sequences, which induced minimal amounts of alpha-helix in RecA protein. The magnitude of induction of alpha-helix in RecA protein, which occurred concomitant with the production of ternary complexes, was 2-fold higher with homologous than heterologous duplex DNA. Most importantly, the stimulation of ATP hydrolysis by high salt coincided with that of the induction of alpha-helix in RecA protein. These conformational differences provide a basis for thinking about the biochemical and structural transitions that RecA protein experiences during the formal steps of presynapsis, recognition, and alignment of homologous sequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the presence of ATP, recA protein forms a presynaptic complex with single-stranded DNA that is an obligatory intermediate in homologous pairing. Presynaptic complexes of recA protein and circular single strands that are active in forming joint molecules can be isolated by gel filtration. These isolated active complexes are nucleoprotein filaments with the following characteristics: (i) a contour length that is at least 1.5 times that of the corresponding duplex DNA molecule, (ii) an ordered structure visualized by negative staining as a striated filament with a repeat distance of 9.0 nm and a width of 9.3 nm, (iii) approximately 8 molecules of recA protein and 20 nucleotide residues per striation. The widened spacing between bases in the nucleoprotein filament means that the initial matching of complementary sequences must involve intertwining of the filament and duplex DNA, unwinding of the latter, or some combination of both to equalize the spacing between nascent base pairs. These experiments support the concept that recA protein first forms a filament with single-stranded DNA, which in turn binds to duplex DNA to mediate both homologous pairing and subsequent strand exchange.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When E. coli single-stranded DNA binding protein (SSB) coats single-stranded DNA (ssDNA) in the presence of 1 mM MgCl2 it inhibits the subsequent binding of recA protein, whereas SSB binding to ssDNA in 12 mM MgCl2 promotes the binding of recA protein. These two conditions correspond respectively to those which produce 'smooth' and 'beaded' forms of ssDNA-SSB filaments. By gel filtration and immunoprecipitation we observed active nucleoprotein filaments of recA protein and SSB on ssDNA that contained on average 1 monomer of recA protein per 4 nucleotides and 1 monomer of SSB per 20-22 nucleotides. Filaments in such a mixture, when digested with micrococcal nuclease produced a regular repeating pattern, approximately every 70-80 nucleotides, that differed from the pattern observed when only recA protein was bound to the ssDNA. We conclude that the beaded ssDNA-SSB nucleoprotein filament readily binds recA protein and forms an intermediate that is active in the formation of joint molecules and can retain substantially all of the SSB that was originally bound.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of E coli recA protein to promote homologous pairing with linear duplex DNA bound to HU protein (Nucleosome cores) was found to be differentially affected. The formation of paranemic joint molecules was not affected whereas the formation of plectomic joint molecules was inhibited from the start of the reaction. The formation of paranemic joint molecules between nucleoprotein filaments of recA protein-circular single stranded DNA and closed circular duplex DNA is believed to generate positive supercoiling in the duplex DNA. We found that the positively superhelical duplex DNA was inert in the formation of joint molecules but could be converted into an active substrate, in situ, by the action of wheat germ topoisomerase I. These observations initiate an understanding of the structural features of E coli chromosome such as DNA supercoiling and nucleosome-like structures in homologous recombination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Multiple sclerosis (MS) is thought to be a T cell-mediated autoimmune disorder. MS pathogenesis is likely due to a genetic predisposition triggered by a variety of environmental factors. Epigenetics, particularly DNA methylation, provide a logical interface for environmental factors to influence the genome. In this study we aim to identify DNA methylation changes associated with MS in CD8+ T cells in 30 relapsing remitting MS patients and 28 healthy blood donors using Illumina 450K methylation arrays. Findings Seventy-nine differentially methylated CpGs were associated with MS. The methylation profile of CD8+ T cells was distinctive from our previously published data on CD4+ T cells in the same cohort. Most notably, there was no major CpG effect at the MS risk gene HLA-DRB1 locus in the CD8+ T cells. Conclusion CD8+ T cells and CD4+ T cells have distinct DNA methylation profiles. This case–control study highlights the importance of distinctive cell subtypes when investigating epigenetic changes in MS and other complex diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Study of the evolution of species or organisms is essential for various biological applications. Evolution is typically studied at the molecular level by analyzing the mutations of DNA sequences of organisms. Techniques have been developed for building phylogenetic or evolutionary trees for a set of sequences. Though phylogenetic trees capture the overall evolutionary relationships among the sequences, they do not reveal fine-level details of the evolution. In this work, we attempt to resolve various fine-level sequence transformation details associated with a phylogenetic tree using cellular automata. In particular, our work tries to determine the cellular automata rules for neighbor-dependent mutations of segments of DNA sequences. We also determine the number of time steps needed for evolution of a progeny from an ancestor and the unknown segments of the intermediate sequences in the phylogenetic tree. Due to the existence of vast number of cellular automata rules, we have developed a grid system that performs parallel guided explorations of the rules on grid resources. We demonstrate our techniques by conducting experiments on a grid comprising machines in three countries and obtaining potentially useful statistics regarding evolutions in three HIV sequences. In particular, our work is able to verify the phenomenon of neighbor-dependent mutations and find that certain combinations of neighbor-dependent mutations, defined by a cellular automata rule, occur with greater than 90% probability. We also find the average number of time steps for mutations for some branches of phylogenetic tree over a large number of possible transformations with standard deviations less than 2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cobalt(III) complexes [Co(pnt)(B)(2)](NO3)(2) (1-3) of pyridine-2-thiol (pnt) and phenanthroline bases (B), viz. 1,10-phenanthroline (phen in 1), dipyrido[3,2-d: 2',3'-f]quinoxaline (dpq in 2) and dipyrido[3,2-a:2',3'-c] phenazine (dppz in 3), have been prepared, characterized and their photo-induced anaerobic DNA cleavage activity studied. The crystal structure of 1a as mixed ClO4- and PF6- salt of 1 shows a (CoN5S)-N-III coordination geometry in which the pnt and phen showed N,S- and N,N-donor binding modes, respectively. The complexes exhibit Co(III)/Co(II) redox couple near -0.3 V (vs. SCE) in 20% DMF-Tris-HCl buffer having 0.1 M TBAP. The complexes show binding propensity to calf thymus DNA giving K-b values within 2.2 x 10(4)-7.3 x 10(5) M-1. Thermal melting and viscosity data suggest DNA surface and/or groove binding of the complexes. The complexes show significant anaerobic DNA cleavage activity in red light under argon atmosphere possibly involving sulfide anion radical or thiyl radical species. The DNA cleavage reaction under aerobic medium in red light is found to involve both singlet oxygen and hydroxyl radical pathways. The dppz complex 3 shows non-specific BSA and lysozyme protein cleavage activity in UV-A light of 365 nm via both hydroxyl and singlet oxygen pathways. The dppz complex 3 exhibits photocytotoxicity in HeLa cervical cancer cells giving IC50 values of 767 nM and 19.38 mu M in UV-A light of 365 nm and in the dark, respectively. A significant reduction of the dark toxicity of the dppz base (IC50 = 8.34 mu M in dark) is observed on binding to the cobalt(III) center.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, we present the synthesis, photochemical, and DNA binding properties of three photoisomerizable azobenzene−distamycin conjugates in which two distamycin units were linked via electron-rich alkoxy or electron-withdrawing carboxamido moieties with the azobenzene core. Like parent distamycin A, these molecules also demonstrated AT-specific DNA binding. Duplex DNA binding abilities of these conjugates were found to depend upon the nature and length of the spacer, the location of protonatable residues, and the isomeric state of the conjugate. The changes in the duplex DNA binding efficiency of the individual conjugates in the dark and with their respective photoirradiated forms were examined by circular dichroism, thermal denaturation of DNA, and Hoechst displacement assay with poly[d(A-T).d(T-A)] DNA in 150 mM NaCl buffer. Computational structural analyses of the uncomplexed ligands using ab initio HF and MP2 theory and molecular docking studies involving the conjugates with duplex d[(GC(AT)10CG)]2 DNA were performed to rationalize the nature of binding of these conjugates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ternary copper(II) complexes [Cu(L-trp)(B)(H2O)](NO3) ( 1–3) and [Cu(L-phe)(B)(H2O)](NO3) ( 4–6) of L-tryptophan (L-trp) and L-phenylalanine (L-phe) having phenanthroline bases (B), viz. 1,10-phenanthroline (phen, 1 and 4), dipyrido[3,2-d:2,3-f]quinoxaline (dpq, 2 and 5) and dipyrido[3,2-a:2,3-c]phenazine (dppz, 3 and 6), were prepared and characterized by physico-chemical techniques. Complexes 3 and 6 were structurally characterized by X-ray crystallography and show the presence of a square pyramidal (4 + 1) CuN3O2 coordination geometry in which the N,O-donor amino acid (L-trp or L-phe) and N,N-donor phenanthroline base bind at the equatorial plane with an aqua ligand coordinated at the elongated axial site. Complex 3 shows significant distortion from the square pyramidal geometry and a strong intramolecular – stacking interaction between the pendant indole ring of L-trp and the planar dppz aromatic moiety. All the complexes display good binding propensity to the calf thymus DNA giving an order: 3, 6 (dppz) > 2, 5 (dpq) > 1, 4 (phen). The binding constant (Kb) values are in the range of 2.1 × 104–1.1 × 106 mol-1 with the binding site size (s) values of 0.17–0.63. The phen and dpq complexes are minor groove binders while the dppz analogues bind at the DNA major groove. Theoretical DNA docking studies on 2 and 3 show the close proximity of two photosensitizers, viz. the indole moiety of L-trp and the quinoxaline/phenazine of the dpq/dppz bases, to the complementary DNA strands. Complexes 2 and 3 show oxidative DNA double strand breaks (dsb) of supercoiled (SC) DNA forming a significant quantity of linear DNA along with the nicked circular (NC) form on photoexposure to UV-A light of 365 nm and red light of 647.1 nm (Ar–Kr laser). Complexes 1, 5 and 6 show only single strand breaks (ssb) forming NC DNA. The red light induced DNA cleavage involves metal-assisted photosensitization of L-trp and dpq/dppz base resulting in the formation of a reactive singlet oxygen (1O2) species.