825 resultados para Fault Tolerance
Resumo:
This paper presents studies on the use of carbon nanotubes dispersed in an insulating fluid to serve as an automaton for healing open-circuit interconnect faults in integrated circuits. The physics behind the repair mechanism is the electric-field-induced diffusion limited aggregation. On the occurrence of an open fault, the repair is automatically triggered due to the presence of an electric field across the gap. We perform studies on the repair time as a function of the electric field and dispersion concentrations with the above application in mind.
Resumo:
This paper deals with line protection challenges experienced in system having substantial wind generation penetration. Two types of WTGU: Doubly Fed (DFIG) and Squirrel Cage (SCIG) Induction Generators are simulated and connected to grid with single circuit transmission line. The paper summarizes analytical investigations carried out on the impedance seen by distance relays by varying fault resistances and grid short circuit MVA, for the protection of such transmission lines during faults. The results are also compared with systems having conventional synchronous machine connected to the grid.
Resumo:
In this paper, we explore noise-tolerant learning of classifiers. We formulate the problem as follows. We assume that there is an unobservable training set that is noise free. The actual training set given to the learning algorithm is obtained from this ideal data set by corrupting the class label of each example. The probability that the class label of an example is corrupted is a function of the feature vector of the example. This would account for most kinds of noisy data one encounters in practice. We say that a learning method is noise tolerant if the classifiers learnt with noise-free data and with noisy data, both have the same classification accuracy on the noise-free data. In this paper, we analyze the noise-tolerance properties of risk minimization (under different loss functions). We show that risk minimization under 0-1 loss function has impressive noise-tolerance properties and that under squared error loss is tolerant only to uniform noise; risk minimization under other loss functions is not noise tolerant. We conclude this paper with some discussion on the implications of these theoretical results.
Resumo:
This paper presents a multi-class support vector machine (SVMs) approach for locating and diagnosing faults in electric power distribution feeders with the penetration of Distributed Generations (DGs). The proposed approach is based on the three phase voltage and current measurements which are available at all the sources i.e. substation and at the connection points of DG. To illustrate the proposed methodology, a practical distribution feeder emanating from 132/11kV-grid substation in India with loads and suitable number of DGs at different locations is considered. To show the effectiveness of the proposed methodology, practical situations in distribution systems (DS) such as all types of faults with a wide range of varying fault locations, source short circuit (SSC) levels and fault impedances are considered for studies. The proposed fault location scheme is capable of accurately identify the fault type, location of faulted feeder section and the fault impedance. The results demonstrate the feasibility of applying the proposed method in practical in smart grid distribution automation (DA) for fault diagnosis.
Resumo:
First principles calculations were done to evaluate the lattice parameter, cohesive energy and stacking fault energies of ordered gamma' (Ll(2)) precipitates in superalloys as a function of composition. It was found that addition of Ti and Ta lead to an increase in lattice parameter and decrease in cohesive energy, while Ni antisites had the opposite effect. Ta and Ti addition to stoichiometric Ni3Al resulted in an initial increase in the energies of APB((111)), CSF(111), APB((001)) and SISF(111). However, at higher concentrations, the fault energies decreased. Addition of Ni antisites decreased the energy of all four faults monotonically. A model based on nearest neighbor bonding was used for Ni-3(Al, Ta), Ni-3(Al, Ti) and Ni-3(Al, Ni) pseudo-binary systems and extended to pseudo- ternary Ni-3(Al, Ta, Ni) and Ni-3(Al, Ti, Ni) systems. Recipes were developed for predicting lattice parameters, cohesive energies and fault energies in pseudo- ternary systems on the basis of coefficients derived from simpler pseudobinary systems. The model predictions were found to be in good agreement with first principles calculations for lattice parameters, cohesive energies, and energies of APB((111)) and CSF(111).
Resumo:
Mobile nodes observing correlated data communicate using an insecure bidirectional switch to generate a secret key, which must remain concealed from the switch. We are interested in fault-tolerant secret key rates, i.e., the rates of secret key generated even if a subset of nodes drop out before the completion of the communication protocol. We formulate a new notion of fault-tolerant secret key capacity, and present an upper bound on it. This upper bound is shown to be tight when the random variables corresponding to the observations of nodes are exchangeable. Further, it is shown that one round of interaction achieves the fault-tolerant secret key capacity in this case. The upper bound is also tight for the case of a pairwise independent network model consisting of a complete graph, and can be attained by a noninteractive protocol.
Resumo:
Delamination is one of the most commonly occurring defects in laminated composite structures. Under operating fatigue loads on the laminate this delamination could grow and totally delaminate certain number of layers from the base laminate. This will result in loss of both compressive residual strength and buckling margins available. In this paper, geometrically non-linear analysis and evaluation of Strain Energy Release Rates using MVCCI technique is presented. The problems of multiple delamination, effect of temperature exposure and delamination from pin loaded holes are addressed. Numerical results are presented to draw certain inferences of importance to design of high technology composite structures such as aircraft wing.
Resumo:
The superior catalytic activity along with improved CO tolerance for formic acid electro-oxidation has been demonstrated on a NiO-decorated reduced graphene oxide (rGO) catalyst. The cyclic voltammetry response of rGO-NiO/Pt catalyst elucidates improved CO tolerance and follows direct oxidation pathway. It is probably due to the beneficial effect of residual oxygen groups on rGO support which is supported by FT-IR spectrum. A strong interaction of rGO support with NiO nanoparticles facilitates the removal of CO from the catalyst surface. The chronoamperometric response indicates a higher catalytic activity and stability of rGO-NiO/Pt catalyst than the NiO/Pt and unmodified Pt electrode catalyst for a prolonged time of continuous oxidation of formic acid. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
The evolution of deformation texture in a Ni-60Co alloy with low stacking fault energy and a grain size in the nanometre range has been investigated. The analyses of texture and microstructure suggest different mechanisms of deformation in nanocrystalline as compared to microcrystalline Ni-60Co alloy. In nanocrystalline material, the mechanism responsible for texture formation has been identified as partial slip, whereas in microcrystalline material, a characteristic texture forms due to twinning and shear banding.
Resumo:
In many organisms ``Universal Stress Proteins'' CUSPS) are induced in response to a variety of environmental stresses. Here we report the structures of two USPs, YnaF and YdaA from Salmonella typhimurium determined at 1.8 angstrom and 2.4 angstrom resolutions, respectively. YnaF consists of a single USP domain and forms a tetrameric organization stabilized by interactions mediated through chloride ions. YdaA is a larger protein consisting of two tandem USP domains. Two protomers of YdaA associate to form a structure similar to the YnaF tetramer. YdaA showed ATPase activity and an ATP binding motif G-2X-G-9X-G(S/T/N) was found in its C-terminal domain. The residues corresponding to this motif were not conserved in YnaF although YnaF could bind ATP. However, unlike YdaA, YnaF did not hydrolyse ATP in vitro. Disruption of interactions mediated through chloride ions by selected mutations converted YnaF into an ATPase. Residues that might be important for ATP hydrolysis could be identified by comparing the active sites of native and mutant structures. Only the C-terminal domain of YdaA appears to be involved in ATP hydrolysis. The structurally similar N-terminal domain was found to bind a zinc ion near the segment equivalent to the phosphate binding loop of the C-terminal domain. Mass spectrometric analysis showed that YdaA might bind a ligand of approximate molecular weight 800 daltons. Structural comparisons suggest that the ligand, probably related to an intermediate in lipid A biosynthesis, might bind at a site close to the zinc ion. Therefore, the N-terminal domain of YdaA binds zinc and might play a role in lipid metabolism. Thus, USPs appear to perform several distinct functions such as ATP hydrolysis, altering membrane properties and chloride sensing. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
Several papers have studied fault attacks on computing a pairing value e(P, Q), where P is a public point and Q is a secret point. In this paper, we observe that these attacks are in fact effective only on a small number of pairing-based protocols, and that too only when the protocols are implemented with specific symmetric pairings. We demonstrate the effectiveness of the fault attacks on a public-key encryption scheme, an identity-based encryption scheme, and an oblivious transfer protocol when implemented with a symmetric pairing derived from a supersingular elliptic curve with embedding degree 2.
Resumo:
Three materials, pure aluminium, Al-4 wt.% Mg, alpha-brass have been chosen to understand the evolution of texture and microstructure during rolling. Pure Al develops a strong copper-type rolling texture and the deformation is entirely slip dominated. In Al-4Mg alloy, texture is copper-type throughout the deformation. The advent of Cu-type shear bands in the later stages of deformation has a negligible effect on the final texture. alpha-brass shows a characteristic brass-type texture from the early stages of rolling. Extensive twinning in the intermediate stages of deformation (epsilon(t) similar to 0.5) causes significant texture reorientation towards alpha-fiber. Beyond 40% reduction, deformation is dominated by Bs-type shear bands, and the banding coincides with the evolution of <111>parallel to ND components. The crystallites within the bands preferentially show <110>parallel to ND components. The absence of the Cu component throughout the deformation process indicates that, for the evolution of brass-type texture, the presence of Cu component is not a necessary condition. The final rolling texture is a synergistic effect of deformation twinning and shear banding.
Resumo:
The time division multiple access (TDMA) based channel access mechanisms perform better than the contention based channel access mechanisms, in terms of channel utilization, reliability and power consumption, specially for high data rate applications in wireless sensor networks (WSNs). Most of the existing distributed TDMA scheduling techniques can be classified as either static or dynamic. The primary purpose of static TDMA scheduling algorithms is to improve the channel utilization by generating a schedule of smaller length. But, they usually take longer time to schedule, and hence, are not suitable for WSNs, in which the network topology changes dynamically. On the other hand, dynamic TDMA scheduling algorithms generate a schedule quickly, but they are not efficient in terms of generated schedule length. In this paper, we propose a novel scheme for TDMA scheduling in WSNs, which can generate a compact schedule similar to static scheduling algorithms, while its runtime performance can be matched with those of dynamic scheduling algorithms. Furthermore, the proposed distributed TDMA scheduling algorithm has the capability to trade-off schedule length with the time required to generate the schedule. This would allow the developers of WSNs, to tune the performance, as per the requirement of prevalent WSN applications, and the requirement to perform re-scheduling. Finally, the proposed TDMA scheduling is fault-tolerant to packet loss due to erroneous wireless channel. The algorithm has been simulated using the Castalia simulator to compare its performance with those of others in terms of generated schedule length and the time required to generate the TDMA schedule. Simulation results show that the proposed algorithm generates a compact schedule in a very less time.
Resumo:
Bacterial biofilms display a collective lifestyle, wherein the cells secrete extracellular polymeric substances (EPS) that helps in adhesion, aggregation, stability, and to protect the bacteria from antimicrobials. We asked whether the BPS could act as a public good for the biofilm and observed that infiltration of cells that do not produce matrix components weakened the biofilm of Salmonella enterica serovar Typhimurium. PS production was costly for the producing cells, as indicated by a significant reduction in the fitness of wild type (WT) cells during competitive planktonic growth relative to the non-producers. Infiltration frequency of non-producers in the biofilm showed a concomitant decrease in overall productivity. It was apparent in the confocal images that the non producing cells benefit from the BPS produced by the Wild Type (WT) to stay in the biofilm. The biofilm containing non-producing cells were more significantly susceptible to sodium hypochlorite and ciprofloxacin treatment than the WT biofilm. Biofilm infiltrated with non-producers delayed the pathogenesis, as tested in a murine model. The cell types were spatially assorted, with non producers being edged out in the biofilm. However, cellulose was found to act as a barrier to keep the non-producers away from the WT microcolony. Our results show that the infiltration of non-cooperating cell types can substantially weaken the biofilm making it vulnerable to antibacterials and delay their pathogenesis. Cellulose, a component of BPS, was shown to play a pivotal role of acting as the main public good, and to edge-out the non-producers away from the cooperating microcolony.
Resumo:
Deformation twins and stacking faults have been observed in nanocrystal line Ni, for the first time under uniaxial tensile test conditions. These partial dislocation mediated deformation mechanisms are enhanced at cryogenic test temperatures. Our observations highlight the effects of deformation conditions, temperature in particular, on deformation mechanisms in nanograins.