965 resultados para Fat consumption


Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMMARY The present study is a review of data available in Brazil on bacterial diseases transmitted through the consumption of seafood and related products. Data are presented regarding outbreaks and cases of disease and laboratory findings associated with pathogens in seafood and related products, and methods for prevention and control are described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anisakiasis and Pseudoterranovosis are human diseases caused by the ingestion of live Anisakidae larvae in raw, undercooked or lightly marinated fish. Larvae were collected from one salted cod sold for human consumption in a Sao Paulo market in 2013. One section of one brownish larva was used for molecular analyses. The partial COX2 gene sequence from the larva had a nucleotide identity of 99.8 % with Pseudoterranova azarasi, which belongs to the Pseudoterranova decipiens species complex. The risk of allergy when consuming dead larvae in salted fish is not well known and should be considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An early and accurate recognition of success in treating obesity may increase the compliance of obese children and their families to intervention programs. This observational, prospective study aimed to evaluate the ability and the time to detect a significant reduction of adiposity estimated by body mass index (BMI), percentage of fat mass (%FM), and fat mass index (FMI) during weight management in prepubertal obese children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RESUMO - Introdução: A despesa em saúde aumentou consideravelmente nas últimas décadas na maioria dos países industrializados. Por outro lado, os indicadores de saúde melhoraram. A evidência empírica sobre a relação entre as despesas em saúde e a saúde das populações tem sido inconclusiva. Este estudo aborda a relação entre as despesas em saúde e a saúde das populações através de dados agregados para 34 países para o período 1980-2010. Metodologia: Utilizou-se o coeficiente de correlação de Pearson para avaliar a correlação entre as variáveis explicativas e os indicadores de saúde. Procedeuse ainda à realização de uma regressão multivariada com dados em painel para cada indicador de saúde utilizado como variável dependente: esperança de vida à nascença e aos 65 anos para mulheres e homens, anos de vida potencialmente perdidos para mulheres e homens e mortalidade infantil. A principal variável explicativa utilizada foi a despesa em saúde, mas consideraram-se também vários fatores de confundimento, nomeadamente a riqueza, fatores estilo de vida, e oferta de cuidados. Resultados: A despesa per capita tem impacto nos indicadores de saúde mas ao adicionarmos a variável PIB per capita deixa de ser estatisticamente significativa. Outros fatores têm um impacto significativo para quase todos os indicadores de saúde utilizados: consumo de álcool e tabaco, gordura, o número de médicos e a imunização, confirmando vários resultados da literatura. Conclusão: Os resultados vão ao encontro de alguns estudos que afirmam o impacto marginal das despesas em saúde e do progresso da medicina nos resultados em saúde desde os anos 80 nos países industrializados.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented in partial fulfilment of the Requirements for the Degree of Master in Biotechnology

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, reducing energy consumption is one of the highest priorities and biggest challenges faced worldwide and in particular in the industrial sector. Given the increasing trend of consumption and the current economical crisis, identifying cost reductions on the most energy-intensive sectors has become one of the main concerns among companies and researchers. Particularly in industrial environments, energy consumption is affected by several factors, namely production factors(e.g. equipments), human (e.g. operators experience), environmental (e.g. temperature), among others, which influence the way of how energy is used across the plant. Therefore, several approaches for identifying consumption causes have been suggested and discussed. However, the existing methods only provide guidelines for energy consumption and have shown difficulties in explaining certain energy consumption patterns due to the lack of structure to incorporate context influence, hence are not able to track down the causes of consumption to a process level, where optimization measures can actually take place. This dissertation proposes a new approach to tackle this issue, by on-line estimation of context-based energy consumption models, which are able to map operating context to consumption patterns. Context identification is performed by regression tree algorithms. Energy consumption estimation is achieved by means of a multi-model architecture using multiple RLS algorithms, locally estimated for each operating context. Lastly, the proposed approach is applied to a real cement plant grinding circuit. Experimental results prove the viability of the overall system, regarding both automatic context identification and energy consumption estimation.