918 resultados para Faroe Islands
Resumo:
The harbor seal (Phoca vitulina) is a large-bodied and abundant predator in the Salish Sea ecosystem, and its population has recovered since the 1970s after passage of the Marine Mammal Protection Act and the cessation of bounties. Little is known about how this large predator population may affect the recovery of fish stocks in the Salish Sea, where candidate marine protected areas are being proposed. We used a bioenergetics model to calculate baseline consumption rates in the San Juan Islands, Washington. Salmonids (Oncorhynchus spp.) and herring (Clupeidae) were the 2 most energetically important prey groups for biomass consumed by harbor seals. Estimated consumption of salmonids was 783 (±380 standard deviation [SD]) metric tons (t) in the breeding season and 675 (±388 SD t in the nonbreeding season. Estimated consumption of herring was 646 (±303 SD) t in the breeding season and 2151 (±706 SD) t in the nonbreeding season. Rockfish, a depressed fish stock currently in need of population recovery, composed one of the minor prey groups consumed by harbor seals (84 [±26 SD] t in the nonbreeding season). The variables of seal body mass and proportion of prey in seal diet explained >80% of the total variation in model outputs. Prey groups, such as rockfish, that are targeted for recovery may still be affected by even low levels of predation. This study highlights the importance of salmonids and herring for the seal population and provides a framework for refining consumption estimates and their confidence intervals with future data.
Resumo:
We provide morphological and molecular evidence to recognize a new species of skate from the North Pacific, Bathyraja panthera. We also resurrect the skate subgenus Arctoraja Ishiyama, confirming its monophyly and the validity of the subgenus. Arctoraja was previously recognized as a distinct subgenus of Breviraja and later synonymized with Bathyraja (family Rajidae). Although the nominal species of Arctoraja have all been considered synonyms of Bathyraja parmifera by various authors, on the basis of morphometric, meristic, chondrological, and molecular data we recognize four species, including the new species. Species of Arctoraja are distributed across the North Pacific Ocean and adjacent seas from southern Japan to British Columbia. Bathyraja parmifera is abundant in the eastern Bering Sea, Aleutian Islands, and northern Gulf of Alaska; B. smirnovi is a western Pacific species found in the Sea of Okhotsk and Sea of Japan; B. simoterus is restricted to waters around the northern and eastern coasts of Hokkaido, Japan; and the new species B. panthera is restricted to the western Aleutian Islands. Bathyraja panthera is diagnosed by its color pattern of light yellow blotches with black spotting on a greenish brown background, high thorn and vertebral counts, chondrological characters of the neurocranium and clasper, and a unique nucleotide sequence within the mitochondrial cytochrome oxidase gene. Furthermore, the species presently recognized as Bathyraja parmifera exhibits two haplotypes among specimens from Alaska, suggesting the possibility of a second, cryptic species.
Resumo:
Salt River Bay National Historical Park and Ecological Preserve (hereafter, SARI or the park) was created in 1992 to preserve, protect, and interpret nationally significant natural, historical, and cultural resources (United States Congress 1992). The diverse ecosystem within it includes a large mangrove forest, a submarine canyon, coral reefs, seagrass beds, coastal forests, and many other natural and developed landscape elements. These ecosystem components are, in turn, utilized by a great diversity of flora and fauna. A comprehensive spatial inventory of these ecosystems is required for successful management. To meet this need, the National Oceanic and Atmospheric Administration (NOAA) Biogeography Program, in consultation with the National Park Service (NPS) and the Government of the Virgin Islands Department of Planning and Natural Resources (VIDPNR), conducted an ecological characterization. The characterization consists of three complementary components: a text report, digital habitat maps, and a collection of historical aerial photographs. This ecological characterization provides managers with a suite of tools that, when coupled with the excellent pre-existing body of work on SARI resources, enables improved research and monitoring activities within the park (see Appendix F for a list of data products).
Resumo:
The priority management goal of the National Marine Sanctuaries Program (NMSP) is to protect marine ecosystems and biodiversity. This goal requires an understanding of broad-scale ecological relationships and linkages between marine resources and physical oceanography to support an ecosystem management approach. The Channel Islands National Marine Sanctuary (CINMS) is currently reviewing its management plan and investigating boundary expansion. A management plan study area (henceforth, Study Area) was described that extends from the current boundary north to the mainland, and extends north to Point Sal and south to Point Dume. Six additional boundary concepts were developed that vary in area and include the majority of the Study Area. The NMSP and CINMS partnered with NOAA’s National Centers for Coastal Ocean Science Biogeography Team to conduct a biogeographic assessment to characterize marine resources and oceanographic patterns within and adjacent to the sanctuary. This assessment includes a suite of quantitative spatial and statistical analyses that characterize biological and oceanographic patterns in the marine region from Point Sal to the U.S.-Mexico border. These data were analyzed using an index which evaluates an ecological “cost-benefit” within the proposed boundary concepts and the Study Area. The sanctuary resides in a dynamic setting where two oceanographic regimes meet. Cold northern waters mix with warm southern waters around the Channel Islands creating an area of transition that strongly influences the regions oceanography. In turn, these processes drive the biological distributions within the region. This assessment analyzes bathymetry, benthic substrate, bathymetric life-zones, sea surface temperature, primary production, currents, submerged aquatic vegetation, and kelp in the context of broad-scale patterns and relative to the proposed boundary concepts and the Study Area. Boundary cost-benefit results for these parameters were variable due to their dynamic nature; however, when analyzed in composite the Study Area and Boundary Concept 2 were considered the most favorable. Biological data were collected from numerous resource agencies and university scientists for this assessment. Fish and invertebrate trawl data were used to characterize community structure. Habitat suitability models were developed for 15 species of macroinvertebrates and 11 species of fish that have significant ecological, commercial, or recreational importance in the region and general patterns of ichthyoplankton distribution are described. Six surveys of ship and plane at-sea surveys were used to model marine bird diversity from Point Arena to the U.S.-Mexico border. Additional surveys were utilized to estimate density and colony counts for nine bird species. Critical habitat for western snowy plover and the location of California least tern breeding pairs were also analyzed. At-sea surveys were also used to describe the distribution of 14 species of cetaceans and five species of pinnipeds. Boundary concept cost-benefit indices revealed that Boundary Concept 2 and the Study Area were most favorable for the majority of the species-specific analyses. Boundary Concept 3 was most favorable for bird diversity across the region. Inadequate spatial resolution for fish and invertebrate community data and incompatible sampling effort information for bird and mammal data precluded boundary cost-benefit analysis.
Resumo:
The mission of NOAA’s Office of National Marine Sanctuaries (ONMS) is to serve as the trustee for a system of marine protected areas, to conserve, protect and enhance biodiversity. To assist in accomplishing this mission, the ONMS has developed a partnership with NOAA’s Center for Coastal Monitoring and Assessment’s Biogeography Branch (CCMA-BB) to conduct biogeographic assessments of marine resources within and adjacent to the marine waters of NOAA’s National Marine Sanctuaries (Kendall and Monaco, 2003). Biogeography is the study of spatial and temporal distributions of organisms, their associated habitats, and the historical and biological factors that influence species’ distributions. Biogeography provides a framework to integrate species distributions and life history data with information on the habitats of a region to characterize and assess living marine resources within a sanctuary. The biogeographic data are integrated in a Geographical Information System (GIS) to enable visualization of species’ spatial and temporal patterns, and to predict changes in abundance that may result from a variety of natural and anthropogenic perturbations or management strategies (Monaco et al., 2005; Battista and Monaco, 2004). Defining biogeographic patterns of living marine resources found throughout the Northwestern Hawaiian Islands (NWHI) was identified as a priority activity at a May 2003 workshop designed to outline scientifi c and management information needs for the NWHI (Alexander et al., 2004). NOAA’s Biogeography Branch and the Papahanaumokuakea Marine National Monument (PMNM) under the direction of the ONMS designed and implemented this biogeographic assessment to directly support the research and management needs of the PMNM by providing a suite of spatially-articulated products in map and tabular formats. The major fi ndings of the biogeographic assessment are organized by chapter and listed below.
Resumo:
Since 2001, NOAA National Centers for Coastal Ocean Science (NCCOS), Center for Coastal Monitoring and Assessment’s (CCMA) Biogeography Branch (BB) has been working with federal and territorial partners to characterize, monitor, and assess the status of the marine environment across the U.S. Virgin Islands (USVI). At the request of the St. Thomas Fisherman’s Association (STFA) and NOAA Marine Debris Program, CCMA BB developed new partnerships and novel technologies to scientifically assess the threat from derelict fish traps (DFTs). Traps are the predominant gear used for finfish and lobster harvesting in St. Thomas and St. John. Natural phenomena (ground swells, hurricanes) and increasing competition for space by numerous user groups have generated concern about increasing trap loss and the possible ecological, as well as economic, ramifications. Prior to this study, there was a general lack of knowledge regarding derelict fish traps in the Caribbean. No spatially explicit information existed regarding fishing effort, abundance and distribution of derelict traps, the rate at which active traps become derelict, or areas that are prone to dereliction. Furthermore, there was only limited information regarding the impacts of derelict traps on natural resources including ghost fishing. This research identified two groups of fishing communities in the region: commercial fishing that is most active in deeper waters (30 m and greater) and an unknown number of unlicensed subsistence and or commercial fishers that fish closer to shore in shallower waters (30 m and less). In the commercial fishery there are an estimated 6,500 active traps (fish and lobster combined). Of those traps, nearly 8% (514) were reported lost during the 2008-2010 period. Causes of loss/dereliction include: movement of the traps or loss of trap markers due to entanglement of lines by passing vessels; theft; severe weather events (storms, large ground swells); intentional disposal by fishermen; traps becoming caught on various bottom structures (natural substrates, wrecks, etc.); and human error.
Resumo:
Scientific and anecdotal observations during recent decades have suggested that the structure and function of the coral reef ecosystems around St. John, U.S. Virgin Islands have been impacted adversely by a wide range of environmental stressors. Major stressors included the mass die-off of the long-spined sea urchin (Diadema antillarum) in the early 1980s, a series of hurricanes (David and Frederick in 1979, and Hugo in 1989), overfishing, mass mortality of Acropora species and other reef-building corals due to disease and several coral bleaching events. In response to these adverse impacts, the National Centers for Coastal Ocean Science (NCCOS), Center for Coastal Monitoring and Assessment, Biogeography Branch (CCMA-BB) collaborated with federal and territorial partners to characterize, monitor, and assess the status of the marine environment around the island from 2001 to 2012. This 13-year monitoring effort, known as the Caribbean Coral Reef Ecosystem Monitoring Project (CREM), was supported by the NOAA Coral Reef Conservation Program as part of their National Coral Reef Ecosystem Monitoring Program. This technical memorandum contains analysis of nine years of data (2001-2009) from in situ fish belt transect and benthic habitat quadrat surveys conducted in and around the Virgin Islands National Park (VIIS) and the Virgin Islands Coral Reef National Monument (VICR). The purpose of this document is to: 1) Quantify spatial patterns and temporal trends in (i) benthic habitat composition and (ii) fish species abundance, size structure, biomass, and diversity; 2) Provide maps showing the locations of biological surveys and broad-scale distributions of key fish and benthic species and assemblages; and 3) Compare benthic habitat composition and reef fish assemblages in areas under NPS jurisdiction with those in similar areas not managed by NPS (i.e., outside of the VIIS and VICR boundaries). This report provides key information to help the St. John management community and others understand the impacts of natural and man-made perturbations on coral reef and near-shore ecosystems. It also supports ecosystem-based management efforts to conserve the region’s coral reef and related fauna while maintaining the many goods and ecological services that they offer to society.
Resumo:
The St. Croix East End Marine Park (STXEEMP) was established in 2003 as the first multi-use marine park managed by the U.S. Virgin Islands Department of Planning and Natural Resources. It encompasses an area of approximately 155 km2 and is entirely within Territorial waters which extend up to 3 nautical miles from shore. As stated in the 2002 management plan, the original goals were to: protect and maintain the biological diversity and other natural values of the area; promote sound management practices for sustainable production purposes; protect the natural resource base from being alienated for other land use purposes that would be detrimental to the area’s biological diversity; and to contribute to regional and national development (The Nature Conservancy, 2002). At the time of its establishment, there were substantial data gaps in knowledge about living marine resources in the St. Croix, and existing data were inadequate for establishing baselines from which to measure the future performance of the various management zones within the park. In response to these data gaps, National Centers for Coastal Ocean Science (NCCOS), Center for Coastal Monitoring and Assessment, Biogeography Branch (CCMA-BB) worked with territorial partners to characterize and assess the status of the marine environment in and around the STXEEMP and land-based stressors that affect them. This project collected and analyzed data on the distribution, diversity and landscape condition of marine communities across the STXEEMP. Specifically, this project characterized (1) landscape and adjacent seascape condition relevant to threats to coral reef ecosystem health, and (2) the marine communities within STXEEMP zones to increase local knowledge of resources exposed to different regulations and stressors.