991 resultados para Familial persisten stuttering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primary aldosteronism (PAL) is caused by the autonomous over-production of aldosterone. Once thought rare, it is now reported to be responsible for 5–10% of hypertension. Familial hyperaldosteronism type II (FH-II), unlike familial hyperaldosteronism type I, is not glucocorticoid-remediable and not associated with the hybrid CYP11B1/CYP11B2 gene mutation. At least five times more common than FH-I, FH-II is clinically, biochemically and morphologically indistinguishable from apparently sporadic PAL, suggesting that its incidence maybe even higher. Studies performed in collaboration with C Stratakis (NIH, Bethesda) on our largest Australian FH-II family (eight affected members) demonstrated linkage at chromosome 7p22. Similar linkage at this region was also found in a South American FH-II family (DNA provided by MI New, Presbyterian Hospital, New York). Mutations in the exons and intron/exon boundaries of the PRKARIB gene (which resides at 7p22 and is closely related to PRKARIA gene mutated in Carney complex) have been excluded in our largest Australian FH-II family. Using more finely spaced markers, we have confirmed linkage at 7p22 in these 2 families, and identified a second Australian family with evidence of linkage at this locus. The combined multipoint LOD score for these 3 families is 4.87 (θ=0) with markers D7S462 and D7S2424, which exceeds the critical threshold for genome-wide significance suggested by Lander and Kruglyak (1995), providing strong support for this locus harbouring mutations responsible for FH-II. A newly identified recombination event in our largest Australian family has narrowed the region of linkage by 1.8 Mb, permitting exclusion of approximately half the genes residing in the original reported 5Mb linked locus. In addition, we have strongly excluded linkage to these key markers in two Australian families (maximum multipoint LOD scores −3.51 and −2.77), supporting the notion that FH-II may be genetically heterogeneous. In order to identify candidate genes at 7p22, more closely spaced markers will be used to refine the locus, as well as single nucleotide polymorphism analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Once thought rare, primary aldosteronism (PAL) is now reported to be responsible for 5–10% of hypertension. Unlike familial hyperaldosteronism type I (FH-I), FH-II is not glucocorticoidremediable and not associated with the hybrid CYP11B1/CYP11B2 gene mutation. At least five times more common than FH-I, FH-II is clinically indistinguishable from apparently sporadic PAL, suggesting an even higher incidence. Studies performed in collaboration with C Stratakis (NIH, Bethesda) on our largest Australian family (eight affected members) demonstrated linkage at chromosome 7p22. Linkage at this region was also found in a South American family (DNA provided by MI New, Mount Sinai School of Medicine, New York) and in a second Australian family. The combined multipoint LOD score for these 3 families is 4.61 (q = 0) with markers D7S462 and D7S517, providing strong support for this locus harbouring mutations responsible for FH-II. A newly identified recombination event in our largest Australian family has narrowed the region of linkage by 1.8 Mb, permitting exclusion of approximately half the genes residing in the originally reported 5 Mb linked locus. Candidate genes that are involved in cell cycle control are of interest as adrenal hyperplasia and adrenal adenomas are common in FH-II patients. A novel candidate gene in this linked region produces the retinoblastoma-associated Kruppel-associated box protein (RBaK) which interacts with the retinoblastoma gene product to repress the expression of genes activated by members of the E2F family of transcription factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In sporadic Alzheimer’s disease (SAD), the classic (‘dense-cored’) ß-amyloid (Aß) deposits are aggregated around the larger blood vessels in the upper laminae of the cerebral cortex. To determine whether a similar relationship exists in familial AD (FAD), the spatial correlations between the diffuse, primitive, and classic ß-amyloid (Aß deposits and blood vessels were studied in ten FAD cases including cases linked to amyloid precursor protein (APP) and presenilin (PSEN) gene mutations and expressing apolipoprotein E (apo E) allele E4. Sections of frontal cortex were immunolabelled with antibodies against Aß and with collagen IV to reveal the Aß deposits and blood vessel profiles. In the FAD cases as a whole, Aßdeposits were distributed in clusters. There was a positive spatial correlation between the clusters of the diffuse Aßdeposits and the larger (>10 µm) and smaller diameter (<10 µm) blood vessels in one and three cases respectively. The primitive Aß deposits were spatially correlated with larger and smaller blood vessels each in four cases and the classic deposits in three and four cases respectively. Apo E genotype of the patient did not influence spatial correlation with blood vessels. Hence, spatial correlations between the classic deposits and larger diameter blood vessels were significantly less frequent in FAD compared with SAD. It was concluded that both Aß deposit morphology and AD subtype determine spatial correlations with blood vessels in AD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spatial patterns of the diffuse, primitive, and classic β-amyloid (Aβ) deposits were compared in cortical regions in early-onset familial Alzheimer's disease (EO-FAD) linked to mutations of the amyloid precursor protein APP) or presenilin 1 (PSEN1) genes, late-onset familial AD (LO-FAD), and sporadic AD (SAD). The objective was to determine whether genetic factors influenced the spatial patterns of the Aβ deposits. Aβ deposits were distributed either in clusters which were regularly distributed parallel to the pia mater or in larger, non-regularly distributed clusters. There were no significant differences in spatial pattern of the diffuse deposits between patient groups but mean cluster size of the diffuse deposits was larger in FAD compared with SAD. Primitive Aβ deposits were more frequently distributed in regular clusters and less frequently distributed in large clusters in FAD compared with SAD. Classic Aβ deposits were more frequently distributed in regularly spaced clusters and less frequently distributed in large clusters in LO-FAD compared with EO-FAD. There were no significant differences in the spatial patterns or cluster sizes of Aβ deposits in cases classified according to apolipoprotein E (APOE) genotype. These results suggest (1) greater deposition of Aβ in the form of clusters of diffuse deposits in FAD, (2) a greater proportion of diffuse deposits may be converted to primitive deposits in SAD, (3) classic deposits are more widely distributed in EO-FAD, and (4) the presence of APOE allele ε4 has little effect on the spatial patterns of Aβ deposits.