927 resultados para FULL BIODEGRADABLE
Resumo:
A novel approach for the preparation of nanomaterials is developed by tuning miniemulsion reaction systems to be transparent in order to enable highly efficient photoreactions. Biodegradable nanoparticles and nanocapsules are obtained by UV-induced thiol-ene cross-linking of polylactide (PLA)-based precursor polymers preassembled in transparent miniemulsions. These well-defined nanomaterials may potentially serve as ideal scaffolds for drug delivery.
Resumo:
We address the problem of designing distributed algorithms for large scale networks that are robust to Byzantine faults. We consider a message passing, full information model: the adversary is malicious, controls a constant fraction of processors, and can view all messages in a round before sending out its own messages for that round. Furthermore, each bad processor may send an unlimited number of messages. The only constraint on the adversary is that it must choose its corrupt processors at the start, without knowledge of the processors’ private random bits.
A good quorum is a set of O(logn) processors, which contains a majority of good processors. In this paper, we give a synchronous algorithm which uses polylogarithmic time and Õ(vn) bits of communication per processor to bring all processors to agreement on a collection of n good quorums, solving Byzantine agreement as well. The collection is balanced in that no processor is in more than O(logn) quorums. This yields the first solution to Byzantine agreement which is both scalable and load-balanced in the full information model.
The technique which involves going from situation where slightly more than 1/2 fraction of processors are good and and agree on a short string with a constant fraction of random bits to a situation where all good processors agree on n good quorums can be done in a fully asynchronous model as well, providing an approach for extending the Byzantine agreement result to this model.
Resumo:
To determine whether internal limiting membrane (ILM) peeling improves anatomic and functional outcomes of full-thickness macular hole (FTMH) surgery when compared with the no-peeling technique.
Resumo:
We introduce a method for measuring the full stress tensor in a crystal utilising the properties of individual point defects. By measuring the perturbation to the electronic states of three point defects with C 3 v symmetry in a cubic crystal, sufficient information is obtained to construct all six independent components of the symmetric stress tensor. We demonstrate the method using photoluminescence from nitrogen-vacancy colour centers in diamond. The method breaks the inverse relationship between spatial resolution and sensitivity that is inherent to existing bulk strain measurement techniques, and thus, offers a route to nanoscale strain mapping in diamond and other materials in which individual point defects can be interrogated.
Three dimensional morphology and compressive behaviour of sintered biodegradable composite scaffolds
Resumo:
Porous poly-L-lactide acid (PLA) scaffolds are prepared using polymer sintering and porogen leaching method. Different weight fractions of the Hydroxyapatite (HA) are added to the PLA to control the acidity and degradation rate. The three dimensional morphology and surface porosity are tested using micro CT, optical microscopy and scanning electron microscopy (SEM). Results indicate that the surface porosity does not change by addition of HA. The micro Ct examinations show slight decrease in the pore size and increase in wall thickness accompanied with reduced anisotropy for the scaffolds containing HA. SEM micrographs show detectable interconnected pores for the scaffold with pure PLA. Addition of the HA results in agglomeration of the HA which blocks some of the pores. Compression tests of the scaffold identify three stages in the stress-strain curve. The addition of HA adversely affects the modulus of the scaffold at the first stage, but this was reversed for the second and third stages of the compression. The results of these tests are compared with the cellular material model. The manufactured scaffold have acceptable properties for a scaffold, however improvement to the mixing of the phases of PLA and HA is required to achieve better integrity of the composite scaffolds.
Resumo:
Porous poly(L-lactic acid) (PLA) scaffolds of 85 per cent and 90 per cent porosity are prepared using polymer sintering and porogen leaching method. Different weight fractions of 10 per cent, 30 per cent, and 50 per cent of hydroxyapatite (HA) are added to the PLA to control the acidity and degradation rate. The three-dimensional (3D) morphology and surface porosity are tested using micro-computer tomography (micro-CT), optical microscopy, and scanning electron microscopy (SEM). Results indicate that the surface porosity does not change on the addition of HA. The micro-CT examinations show a slight decrease in the pore size and increase in the wall thickness accompanied by reduced anisotropy for the scaffolds containing HA. Scanning electron micrographs show detectable interconnected pores for the scaffold with pure PLA. Addition of the HA results in agglomeration of the HA particles and reduced leaching of the porogen. Compression tests of the scaffold identify three stages in the stress-strain curve. The addition of HA results in a reduction in the modulus of the scaffold at the first stage of elastic bending of the wall, but this is reversed for the second and third stages of collapse of the wall and densification in the compression tests. In the scaffolds with 85 per cent porosity, the addition of a high percentage of HA could result in 70 per cent decrease in stiffness in the first stage, 200 per cent increase in stiffness in the second stage, and 20 per cent increase in stiffness in the third stage. The results of these tests are compared with the Gibson cellular material model that is proposed for prediction of the behaviour of cellular material under compression. The pH and molecular weight changes are tracked for the scaffolds within a period of 35 days. The addition of HA keeps the pH in the alkaline region, which results in higher rate of degradation at an early period of observation, followed by a reduced rate of degradation later in the process. The final molecular weight is higher for the scaffolds with HA than for scaffolds of pure PLA. The manufactured scaffolds offer acceptable properties in terms of the pore size range and interconnectivity of the pores and porosity for non-load-bearing bone graft substitute; however, improvement to the mixing of the phases of PLA and HA is required to achieve better integrity of the composite scaffolds. © 2008 IMechE.
Resumo:
A low cost supercritical CO foaming rig with a novel design has been used to prepare fully interconnected and highly porous biodegradable scaffolds with controllable pore size and structure that can promote cancellous bone regeneration. Porous polymer scaffolds have been produced by plasticising the polymer with high pressure CO and by the formation of a porous structure following the escape of CO from the polymer. Although, control over pore size and structure has been previously reported as difficult with this process, the current study shows that control is possible. The effects of processing parameters such as CO saturation pressure, time and temperature and depressurisation rate on the morphological properties, namely porosity, pore interconnectivity, pore size and wall thickness- of the scaffolds have been investigated. Poly(d,l)lactic acid was used as the biodegradable polymer. The surfaces and internal morphologies of the poly(d,l)lactic acid scaffolds were examined using optical microscope and micro computed tomography. Preosteoblast human bone cells were seeded on the porous scaffolds in vitro to assess cell attachment and viability. The scaffolds showed a good support for cell attachment, and maintained cell viability throughout 7 days in culture. This study demonstrated that the morphology of the porous structure can be controlled by varying the foaming conditions, allowing the porous scaffolds to be used in various tissue engineering applications.
Resumo:
Objective: We explored whether readers can understand key messages without having to read the full review, and if there were differences in understanding between various types of summary.
Design: A randomised experiment of review summaries which compared understanding of a key outcome.
Participants: Members of university staff (n = 36).
Setting: Universities on the island of Ireland.
Method: The Cochrane Review chosen examines the health impacts of the use of electric fans during heat waves. Participants were asked their expectation of the effect these would have on mortality. They were then randomly assigned a summary of the review (i.e. abstract, plain language summary, podcast or podcast transcription) and asked to spend a short time reading/listening to the summary. After this they were again asked about the effects of electric fans on mortality and to indicate if they would want to read the full Review.
Main outcome measure: Correct identification of a key review outcome.
Results: Just over half (53%) of the participants identified its key message on mortality after engaging with their summary. The figures were 33% for the abstract group, 50% for both the plain language and transcript groups and 78% for the podcast group.
Conclusions: The differences between the groups were not statistically significant but suggest that the audio summary might improve knowledge transfer compared to written summaries. These findings should be explored further using a larger sample size and with other reviews.
Resumo:
Field testing studies are required for tidal turbine device developers to determine the performance of their turbines in tidal flows. Full-scale testing of the SCHOTTEL tidal turbine has been conducted at Queen’s University Belfast’s tidal site at Strangford Lough, NI. The device was mounted on a floating barge. Testing was conducted over 48 days, for 288 h, during flood tides in daylight hours. Several instruments were deployed, resulting in an expansive data set. The performance results from this data set are presented here. The device, rated to 50 kW at 2.75 m/s was tested in flows up to 2.5 m/s, producing up to 19 kW, when time-averaged. The thrust on the turbine reached 17 kN in the maximum flow. The maximum system efficiency of the turbine in these flows reached 35%. The test campaign was very successful and further tests may be conducted at higher flow speeds in a similar tidal environment.
Resumo:
We consider a multipair decode-and-forward relay channel, where multiple sources transmit simultaneously their signals to multiple destinations with the help of a full-duplex relay station. We assume that the relay station is equipped with massive arrays, while all sources and destinations have a single antenna. The relay station uses channel estimates obtained from received pilots and zero-forcing (ZF) or maximum-ratio combining/maximum-ratio transmission (MRC/MRT) to process the signals. To reduce significantly the loop interference effect, we propose two techniques: i) using a massive receive antenna array; or ii) using a massive transmit antenna array together with very low transmit power at the relay station. We derive an exact achievable rate in closed-form for MRC/MRT processing and an analytical approximation of the achievable rate for ZF processing. This approximation is very tight, especially for large number of relay station antennas. These closed-form expressions enable us to determine the regions where the full-duplex mode outperforms the half-duplex mode, as well as, to design an optimal power allocation scheme. This optimal power allocation scheme aims to maximize the energy efficiency for a given sum spectral efficiency and under peak power constraints at the relay station and sources. Numerical results verify the effectiveness of the optimal power allocation scheme. Furthermore, we show that, by doubling the number of transmit/receive antennas at the relay station, the transmit power of each source and of the relay station can be reduced by 1.5dB if the pilot power is equal to the signal power, and by 3dB if the pilot power is kept fixed, while maintaining a given quality-of-service.
Resumo:
A string of repulsively interacting particles exhibits a phase transition to a zigzag structure, by reducing the transverse trap potential or the interparticle distance. Based on the emergent symmetry Z2 it has been argued that this instability is a quantum phase transition, which can be mapped to an Ising model in transverse field. An extensive Density Matrix Renormalization Group analysis is performed, resulting in an high-precision evaluation of the critical exponents and of the central charge of the system, confirming that the quantum linear-zigzag transition belongs to the critical Ising model universality class. Quantum corrections to the classical phase diagram are computed, and the range of experimental parameters where quantum effects play a role is provided. These results show that structural instabilities of one-dimensional interacting atomic arrays can simulate quantum critical phenomena typical of ferromagnetic systems.
Resumo:
In order to meet the recycling and recovery targets set forth by the European Union's (EU) Waste and Landfill Directives, both the Irish and Czech governments’ policy on waste management is changing to meet these pressures, with major emphasis being placed upon the management of biodegradable municipal waste (BMW). In particular, the EU Landfill Directive requires reductions in the rate of BMW going to landfill to 35% of 1995 values by 2016 and 2020 for Ireland and the Czech Republic, respectively. In this paper, the strategies of how Ireland and the Czech Republic plan to meet this challenge are compared. Ireland either landfills or exports its waste for recovery, while the Czech Republic has a relatively new waste management infrastructure. While Ireland met the first target of 75% diversion of BMW from landfill by 2010 and preliminary 2012 data indicate that Ireland is on track to meet the 2013 target, the achievement of the 2016 target remains at risk. Indicators that were developed to monitor the Czech Republic's path to meeting the targets demonstrate that it did not meet the first target that was set for 2010 and will probably not meet its 2013 target either. The evaluation reports on the implementation of Waste Management Plan of Czech Republic suggest that the currently applied strategy to divert biodegradable waste from landfill is not effective enough. For both countries, the EU Waste Framework and Landfill Directives will be a significant influence and driver of change in waste management practices and governance over the coming decade. This means that both countries will not only have to invest in infrastructure to achieve the targets, but will also have to increase awareness among the public in diverting this waste at the household level. Improving environmental education is part of increased awareness as it is imperative for citizens to understand the consequences of their actions as affluence continues to grow producing increased levels of waste.
Graphical abstract
Despite the differences in the levels of waste generation in both the Czech Republic and Ireland, each country can learn from each other in order to meet the recycling and recovery targets set by the European Union's (EU) Waste and Landfill Directives. Both countries will not only have to invest in infrastructure to achieve the targets, but will also have to increase awareness among the public in diverting this waste at the household level. In addition, there needs to be minimum safe standards when land-spreading organic agricultural and organic municipal and industrial materials on agricultural land used for food production, as well as incentives to increase BMW diversion from landfill such as the increased landfill levy implemented in Ireland and the acceptance of MBT and/or incineration as a means of treating residual waste.