841 resultados para FINFET STRUCTURES
Resumo:
Ce texte est un « droit de réponse » par les auteurs de l'article « Vers un naturalisme social. À la croisée des sciences sociales et des sciences cognitives », publié par SociologieS en octobre 2011, au débat qu'il a suscité. Après une brève mise au point sur la forme même du débat, ainsi que sur les dissensions ponctuelles qui opposent les différents protagonistes, l'article répond aux inquiétudes parfaitement légitimes et aux questions de fond que soulève le naturalisme social.
Resumo:
Basal ganglia and brain stem nuclei are involved in the pathophysiology of various neurological and neuropsychiatric disorders. Currently available structural T1-weighted (T1w) magnetic resonance images do not provide sufficient contrast for reliable automated segmentation of various subcortical grey matter structures. We use a novel, semi-quantitative magnetization transfer (MT) imaging protocol that overcomes limitations in T1w images, which are mainly due to their sensitivity to the high iron content in subcortical grey matter. We demonstrate improved automated segmentation of putamen, pallidum, pulvinar and substantia nigra using MT images. A comparison with segmentation of high-quality T1w images was performed in 49 healthy subjects. Our results show that MT maps are highly suitable for automated segmentation, and so for multi-subject morphometric studies with a focus on subcortical structures.
Resumo:
We present a nonequlibrium approach for the study of a flexible bilayer whose two components induce distinct curvatures. In turn, the two components are interconverted by an externally promoted reaction. Phase separation of the two species in the surface results in the growth of domains characterized by different local composition and curvature modulations. This domain growth is limited by the effective mixing due to the interconversion reaction, leading to a finite characteristic domain size. In addition to these effects, first introduced in our earlier work [ Phys. Rev. E 71 051906 (2005)], the important new feature is the assumption that the reactive process actively affects the local curvature of the bilayer. Specifically, we suggest that a force energetically activated by external sources causes a modification of the shape of the membrane at the reaction site. Our results show the appearance of a rich and robust dynamical phenomenology that includes the generation of traveling and/or oscillatory patterns. Linear stability analysis, amplitude equations, and numerical simulations of the model kinetic equations confirm the occurrence of these spatiotemporal behaviors in nonequilibrium reactive bilayers.
Resumo:
Needle fiber calcite (NFC) is an ubiquitous terrestrial secondary calcium carbonate mineral often associated with calcitic nanofibers. NFC's origin has been debated for a long time and a fungal origin is often proposed. Fungi are known to be involved in mineral weathering and production of metal oxalate, but little information exists regarding the genesis of other minerals, such as calcite. In this study, a comparison of similar ultrastructural characteristics of fungal hyphae and NFC has been performed to highlight analogies between both features. These analogies clearly demonstrate the probable close relationship between fungal filaments (hyphae and rhizomorphs) and NFC and its associated nanofibers.
Resumo:
We discuss the dynamics of the transient pattern formation process corresponding to the splay Fréedericksz transition. The emergence and subsequent evolution of the spatial periodicity is here described in terms of the temporal dependence of the wave numbers corresponding to the maxima of the structure factor. Situations of perpendicular as well as oblique field-induced stripes relative to the initial orientation of the director are both examined with explicit indications of the time scales needed for their appearance and posterior development.
Resumo:
Structural settings and lithological characteristics are traditionally assumed to influence the development of erosional landforms, such as gully networks and rock couloirs, in steep mountain rock basins. The structural control of erosion of two small alpine catchments of distinctive rock types is evaluated by comparing the correspondences between the orientations of their gullies and rock couloirs with (1) the sliding orientations of potential slope failures mechanisms, and (2) the orientation of the maximum joint frequency, this latter being considered as the direction exploited primarily by erosion and mass wasting processes. These characteristic orientations can be interpreted as structural weaknesses contributing to the initiation and propagation of erosion. The morphostructural analysis was performed using digital elevation models and field observations. The catchment comprised of magmatic intrusive rocks shows a clear structural control, mostly expressed through potential wedges failure. Such joint configurations have a particular geometry that encourages the development of gullies in hard rock, e.g. through enhanced gravitational and hydrological erosional processes. In the catchment underlain by sedimentary rocks, penetrative joints that act as structural weaknesses seem to be exploited by gullies and rock couloirs. However, the lithological setting and bedding configuration prominently control the development of erosional landforms, and influence not only the local pattern of geomorphic features, but the general morphology of the catchment. The orientations of the maximum joint frequency are clearly associated with the gully network, suggesting that its development is governed by anisotropy in rock strength. These two catchments are typical of bedrock-dominated basins prone to intense processes of debris supply. This study suggests a quantitative approach for describing the relationship between bedrock jointing and geomorphic features geometry. Incorporation of bedrock structure can be relevant when studying processes governing the transfer of clastic material, for the assessment of sediment yields and in landforms evolution models.
Resumo:
Dopaminergic, serotonergic and noradrenergic nuclei form the trimonoamine modulating system (TMMS). This system modulates emotional/motivational activities mediated by the limbic circuitry, where glutamate is the major excitatory neurotransmitter. Two main concepts are the basis of this review. First, since 1950 and the discovery of the antipsychotic activity of the dopamine D2 receptor antagonist chlorpromazine, it appears that drugs that can modulate the TMMS possess therapeutic psychiatric properties. Second, the concept of glutamate/trimonoamine imbalance in the cortico-striato-thalamo-cortical loop that has been so successful in explaining the pathophysiology of Parkinson disease has been applied in the pathophysiology of schizophrenia. This review will focus on the complex interactions between the fast synaptic glutamatergic transmission and the TMMS in specific parts of the limbic lobe and we will try to link these interactions to some psychiatric disorders, mainly depression, schizophrenia and drug addiction.
Resumo:
1. Little is known on the occurrence and magnitude of faster than normal (catch-up) growth in response to periods of undernutrition in the wild, and the extent to which different body structures compensate and over what timescales is poorly understood. 2. We investigated catch-up growth in nestling Alpine Swifts, Apus melba, by comparing nestling growth trajectories in response to a naturally occurring 1-week period of inclement weather and undernutrition with growth of nestlings reared in a good year. 3. In response to undernutrition, nestlings exhibited a hierarchy of tissues preservation and compensation, with body mass being restored quickly after the end of the period of undernutrition, acceleration of skeletal growth occurring later in development, and compensation in wing length occurring mostly due to a prolongation of growth and delayed fledging. 4. The effect of undernutrition and subsequent catch-up growth was age-dependent, with older nestlings being more resilient to undernutrition, and in turn having less need to compensate later in the development. 5. This shows that young in a free-living bird population can compensate in body mass and body size for a naturally occurring period of undernutrition, and that the timing and extent of compensation varies with age and between body structures.
Resumo:
With the dramatic increase in the volume of experimental results in every domain of life sciences, assembling pertinent data and combining information from different fields has become a challenge. Information is dispersed over numerous specialized databases and is presented in many different formats. Rapid access to experiment-based information about well-characterized proteins helps predict the function of uncharacterized proteins identified by large-scale sequencing. In this context, universal knowledgebases play essential roles in providing access to data from complementary types of experiments and serving as hubs with cross-references to many specialized databases. This review outlines how the value of experimental data is optimized by combining high-quality protein sequences with complementary experimental results, including information derived from protein 3D-structures, using as an example the UniProt knowledgebase (UniProtKB) and the tools and links provided on its website ( http://www.uniprot.org/ ). It also evokes precautions that are necessary for successful predictions and extrapolations.