967 resultados para Experimental conditions
Resumo:
Gamma-glutamyltranspeptidase (GGT-EC 2.3.2.2) activity and glutathione (GSH) content were measured in livers of female weanling Wistar rats (N = 5-18), submitted to rice-and-bean diets (13 and 6% w/w protein), both supplemented or not with DL-methionine (0.5 and 0.23 g/100 g dry diet, respectively). After 28 days, the rats on the rice-and-bean diets showed significantly higher levels (four times higher) of liver GGT activity and a concomitant 50% lower concentration of liver GSH in comparison with control groups feeding on casein. The addition of DL-methionine to rice-and-bean diets significantly increased the liver GSH content, which reached levels 50% higher than those found in animals on casein diets. The increase in GSH was accompanied by a decrease in liver GGT activity, which did not reach levels as low as those observed in the control groups. No significant correlation could be established between GGT and GSH changes under the present experimental conditions. Linear correlation analysis only revealed that in animals submitted to unsupplemented rice-and-bean diets GSH concentration was positively associated (P<0.05) with weight gain, food intake and food efficiency. GGT, however, was negatively correlated (P<0.05) with food intake only, and exclusively for supplemented rice-and-bean diets. The high levels of GGT activity observed in the present study for rats receiving a rice-and-bean mixture could be a result of the poor quality of these diets associated with their deficiency in sulfur amino acids. The results also suggest that diet supplementation with methionine could be important in the reduction of the deleterious effects of GSH depletion by restoring the intracellular concentration of this tripeptide.
Resumo:
Abnormalities in glucose metabolism and insulin action are frequently detected in patients with essential hypertension. Spontaneously hypertensive rats (SHR) have been used as an experimental model to understand this pathological condition. The objective of the present study was to assess glucose metabolism and insulin action in SHR and Wistar rats under fed and fasting conditions. Peripheral glucose utilization was estimated by kinetic studies with [6-³H]-glucose and gluconeogenetic activity was measured during continuous [14C]-bicarbonate infusion. Plasma glucose levels were higher in the SHR group. Plasma insulin levels in the fed state were higher in the SHR group (99.8 ± 6.5 µM) than in the control group (70.4 ± 3.6 µM). Muscle glycogen content was reduced in SHR compared to control under the various experimental conditions. Peripheral glucose utilization was slightly lower in the SHR group in the fed state (8.72 ± 0.55 vs 9.52 ± 0.80 mg kg-1 min-1 in controls). Serum free fatty acid levels, hepatic glycogen levels, hepatic phosphoenolpyruvate carboxykinase activity and gluconeogenetic activity were similar in the two groups. The presence of hyperglycemia and hyperinsulinemia and the slightly reduced peripheral glucose utilization suggest the presence of resistance to the action of insulin in peripheral tissues of SHR. Hepatic gluconeogenesis does not seem to contribute to the metabolic alterations detected in these animals.
Resumo:
The immune and central nervous systems are functionally connected and interacting. The concept that the immune signaling to the brain which induces fever during infection and inflammation is mediated by circulating cytokines has been traditionally accepted. Administration of bacterial lipopolysaccharide (LPS) induces the appearance of a so-termed "cytokine cascade" in the circulation more or less concomitantly to the developing febrile response. Also, LPS-like fever can be induced by systemic administration of key cytokines (IL-1ß, TNF-alpha, and others). However, anti-cytokine strategies against IL-1ß or TNF-alpha along with systemic injections of LPS frequently lead to attenuation of the later stages of the febrile response but not of the initial phase of fever, indicating that cytokines are rather involved in the maintenance than in the early induction of fever. Within the last years experimental evidence has accumulated indicating the existence of neural transport pathways of immune signals to the brain. Because subdiaphragmatic vagotomy prevents or attenuates fever in response to intraperitoneal or intravenous injections of LPS, a role for vagal afferent nerve fibers in fever induction has been proposed. Also other sensory nerves may participate in the manifestation of febrile responses under certain experimental conditions. Thus, injection of a small dose of LPS into an artificial subcutaneous chamber results in fever and formation of cytokines within the inflamed tissue around the site of injection. This febrile response can be blocked in part by injection of a local anesthetic into the subcutaneous chamber, indicating a participation of cutaneous afferent nerve signals in the manifestation of fever in this model. In conclusion, humoral signals and an inflammatory stimulation of afferent sensory nerves can participate in the generation and maintenance of a febrile response.
Resumo:
We measured human frequency response functions for seven angular frequency filters whose test frequencies were centered at 1, 2, 3, 4, 8, 16 or 24 cycles/360º using a supra-threshold summation method. The seven functions of 17 experimental conditions each were measured nine times for five observers. For the arbitrarily selected filter phases, the maximum summation effect occurred at test frequency for filters at 1, 2, 3, 4 and 8 cycles/360º. For both 16 and 24 cycles/360º test frequencies, maximum summation occurred at the lower harmonics. These results allow us to conclude that there are narrow-band angular frequency filters operating somehow in the human visual system either through summation or inhibition of specific frequency ranges. Furthermore, as a general result, it appears that addition of higher angular frequencies to lower ones disturbs low angular frequency perception (i.e., 1, 2, 3 and 4 cycles/360º), whereas addition of lower harmonics to higher ones seems to improve detection of high angular frequency harmonics (i.e., 8, 16 and 24 cycles/360º). Finally, we discuss the possible involvement of coupled radial and angular frequency filters in face perception using an example where narrow-band low angular frequency filters could have a major role.
Resumo:
The aim of the present study was to investigate the effects of high concentrations of KCl in releasing noradrenaline from sympathetic nerves and its actions on postsynaptic alpha-adrenoceptors. We measured the isotonic contractions induced by KCl in the isolated rat anococcygeus muscle under different experimental conditions. The contractile responses induced by KCl were inhibited by alpha-adrenoceptor antagonists in 2.5 mM Ca2+ solution. Prazosin reduced the maximum effect from 100 to 53.9 ± 10.2% (P<0.05) while the pD2 values were not changed. The contractile responses induced by KCl were abolished by prazosin in Ca2+-free solution (P<0.05). Treatment of the rats with reserpine reduced the maximum effect induced by KCl as compared to the contractile responses induced by acetylcholine from 339.5 ± 157.8 to 167.3 ± 65.5% (P<0.05), and increased the pD2 from 1.57 ± 0.01 to 1.65 ± 0.006 (P<0.05), but abolished the inhibitory effect of prazosin (P<0.05). In contrast, L-NAME increased the contractile responses induced by 120 mM KCl by 6.2 ± 2.3% (P<0.05), indicating that KCl could stimulate the neurons that release nitric oxide, an inhibitory component of the contractile response induced by KCl. Our results indicate that high concentrations of KCl induce the release of noradrenaline from noradrenergic neurons, which interacts with alpha1-adrenoceptors in smooth muscle cells, producing a contractile response in 2.5 mM Ca2+ (100%) and in Ca2+-free solution, part of which is due to a direct effect of KCl on the rat anococcygeus muscle.
Resumo:
Immunoglobulin E (IgE) and mast cells are believed to play important roles in allergic inflammation. However, their contributions to the pathogenesis of human asthma have not been clearly established. Significant progress has been made recently in our understanding of airway inflammation and airway hyperresponsiveness through studies of murine models of asthma and genetically engineered mice. Some of the studies have provided significant insights into the role of IgE and mast cells in the allergic airway response. In these models mice are immunized systemically with soluble protein antigens and then receive an antigen challenge through the airways. Bronchoalveolar lavage fluid from mice with allergic airway inflammation contains significant amounts of IgE. The IgE can capture the antigen presented to the airways and the immune complexes so formed can augment allergic airway response in a high-affinity IgE receptor (FcepsilonRI)-dependent manner. Previously, there were conflicting reports regarding the role of mast cells in murine models of asthma, based on studies of mast cell-deficient mice. More recent studies have suggested that the extent to which mast cells contribute to murine models of asthma depends on the experimental conditions employed to generate the airway response. This conclusion was further supported by studies using FcepsilonRI-deficient mice. Therefore, IgE-dependent activation of mast cells plays an important role in the development of allergic airway inflammation and airway hyperresponsiveness in mice under specific conditions. The murine models used should be of value for testing inhibitors of IgE or mast cells for the development of therapeutic agents for human asthma.
Resumo:
Microbial pathogens such as bacillus Calmette-Guérin (BCG) induce the activation of macrophages. Activated macrophages can be characterized by the increased production of reactive oxygen and nitrogen metabolites, generated via NADPH oxidase and inducible nitric oxide synthase, respectively, and by the increased expression of major histocompatibility complex class II molecules (MHC II). Multiple microassays have been developed to measure these parameters. Usually each assay requires 2-5 x 10(5) cells per well. In some experimental conditions the number of cells is the limiting factor for the phenotypic characterization of macrophages. Here we describe a method whereby this limitation can be circumvented. Using a single 96-well microassay and a very small number of peritoneal cells obtained from C3H/HePas mice, containing as little as <=2 x 10(5) macrophages per well, we determined sequentially the oxidative burst (H2O2), nitric oxide production and MHC II (IAk) expression of BCG-activated macrophages. More specifically, with 100 µl of cell suspension it was possible to quantify H2O2 release and nitric oxide production after 1 and 48 h, respectively, and IAk expression after 48 h of cell culture. In addition, this microassay is easy to perform, highly reproducible and more economical.
Resumo:
The high morbidity, high socioeconomic costs and lack of specific treatments are key factors that define the relevance of brain pathology for human health and the importance of research on neuronal protective agents. Epidemiological studies have shown beneficial effects of flavonoids on arteriosclerosis-related pathology in general and neurodegeneration in particular. Flavonoids can protect the brain by their ability to modulate intracellular signals promoting cellular survival. Quercetin and structurally related flavonoids (myricetin, fisetin, luteolin) showed a marked cytoprotective capacity in in vitro experimental conditions in models of predominantly apoptotic death such as that induced by medium concentrations (200 µM) of H2O2 added to PC12 cells in culture. Nevertheless, quercetin did not protect substantia nigra neurons in vivo from an oxidative insult (6-hydroxydopamine), probably due to difficulties in crossing the blood-brain barrier. On the other hand, treatment of permanent focal ischemia with a lecithin/quercetin preparation decreased lesion volume, showing that preparations that help to cross the blood-brain barrier may be critical for the expression of the effects of flavonoids on the brain. The hypothesis is advanced that a group of quercetin-related flavonoids could become lead molecules for the development of neuroprotective compounds with multitarget anti-ischemic effects.
Resumo:
Suurin osa alifaattisista karboksyylihapoista tuotetaan nykyään synteettisesti, mutta öljyn hinnan nousu ja ekologisempi ajattelutapa on aiheuttanut kiinnostusta tuottaa näitä karboksyyli- ja hydroksihappoja jatkossa fermentoimalla tai sellun valmistuksen sivuvirtana syntyvästä mustalipeästä. Nykyään mustalipeä poltetaan sellaisenaan soodakattiloissa keittokemikaalien regeneroimiseksi, energiaksi ja sähköksi. Jatkossa mustalipeästä voisi erottaa arvokkaat orgaaniset hapot ennen polttamista. Saadusta happoseoksesta tulisi erottaa yksittäiset alifaattiset karboksyylihapot toisistaan jatkojalostusta varten. Tämän kandidaatintyön tavoitteena oli selvittää, millä kromatografisella erotusmenetelmällä fermentointituotteina ja teollisuuden sivuvirtoina syntyvistä karboksyylihapposeoksista saadaan yksittäiset alifaattiset karboksyylihapot erotettua toisistaan. Mittaukset suoritettiin kolonnilla, jossa hartsipedin halkaisija oli 1,5 cm ja korkeus 15 cm. Kolonnin erototusmateriaaleina kokeiltiin vahvoja ja heikkoja kationinvaihtohartseja, vahvaa anioninvaihtohartsia ja polymeerisiä adsorbentteja. Erotettavaksi happoseokseksi valittiin sitruuna-, viini-, glykoli-, maito- ja etikkahapon seos. Tehokkain erotus saatiin Puroliten valmistamalla Macronet 270:lla, joka on mikrohuokoinen polymeerinen adsorbentti. Macronet 270:lla saatiin erotettua erityisesti viini- ja glykolihappo sitruuna-, maito- ja etikkahaposta. Yksittäisiä happoja ei saatu kuitenkaan kunnolla erotettua. Parhaat koeolosuhteet erotustehokkuuden ja retentioaikojen kannalta saatiin vesieluentin virtausnopeudella 2 mL/min, syöttöpulssin tilavuudella 5 mL ja kolonnin lämpötilassa 75 °C.
Resumo:
We investigated whether hepatic artery endothelium may be the earliest site of injury consequent to liver ischemia and reperfusion. Twenty-four heartworm-free mongrel dogs of either sex exposed to liver ischemia/reperfusion in vivo were randomized into four experimental groups (N = 6): a) control, sham-operated dogs, b) dogs subjected to 60 min of ischemia, c) dogs subjected to 30 min of ischemia and 60 min of reperfusion, and d) animals subjected to 45 min of ischemia and 120 min of reperfusion. The nitric oxide endothelium-dependent relaxation of hepatic artery rings contracted with prostaglandin F2a and exposed to increasing concentrations of acetylcholine, calcium ionophore A23187, sodium fluoride, phospholipase-C, poly-L-arginine, isoproterenol, and sodium nitroprusside was evaluated in organ-chamber experiments. Lipid peroxidation was estimated by malondialdehyde activity in liver tissue samples and by blood lactic dehydrogenase (LDH), serum aspartate aminotransferase (AST) and serum alanine aminotransferase (ALT) activities. No changes were observed in hepatic artery relaxation for any agonist tested. The group subjected to 45 min of ischemia and 120 min of reperfusion presented marked increases of serum aminotransferases (ALT = 2989 ± 1056 U/L and AST = 1268 ± 371 U/L; P < 0.01), LDH = 2887 ± 1213 IU/L; P < 0.01) and malondialdehyde in liver samples (0.360 ± 0.020 nmol/mgPT; P < 0.05). Under the experimental conditions utilized, no abnormal changes in hepatic arterial vasoreactivity were observed: endothelium-dependent and independent hepatic artery vasodilation were not impaired in this canine model of ischemia/reperfusion injury. In contrast to other vital organs and in the ischemia/reperfusion injury environment, dysfunction of the main artery endothelium is not the first site of reperfusion injury.
Resumo:
The involvement of the hypothalamic-pituitary-adrenal axis in the control of body fluid homeostasis has been extensively investigated in the past few years. In the present study, we reviewed the recent results obtained using different approaches to investigate the effects of glucocorticoids on the mechanisms of oxytocin and vasopressin synthesis and secretion in response to acute and chronic plasma volume and osmolality changes. The data presented here suggest that glucocorticoids are not only involved in the mechanisms underlying the fast release but also in the transcriptional events that lead to decreased synthesis and secretion of these neuropeptides, particularly oxytocin, under diverse experimental conditions of altered fluid volume and tonicity. The endocannabinoid system, through its effects on glutamatergic neurotransmission within the hypothalamus and the nuclear factor κB-mediated transcriptional activity, seems to be also involved in the specific mechanisms by which glucocorticoids exert their central effects on neurohypophyseal hormone synthesis and secretion.
Resumo:
Fusarium species have emerged as one of the more outstanding groups of clinically important filamentous fungi, causing localized and life-threatening invasive infections with high morbidity and mortality. The ability to produce different types of hydrolytic enzymes is thought to be an important virulence mechanism of fungal pathogens and could be associated with the environment of the microorganism. Here, we have measured the production of two distinct lipolytic enzymes, phospholipase and esterase, by sixteen Fusarium isolates recovered from the hospital environment, immunocompromised patients’ blood cultures, foot interdigital space scrapings from immunocompromised patients, and foot interdigital space scrapings from immunocompetent patients (4 isolates each). Fourteen of these 16 isolates were identified asFusarium solani species complex (FSSC) and two were identified as F. oxysporum species complex (FOSC). Some relevant genus characteristics were visualized by light and electron microscopy such as curved and multicelled macroconidia with 3 or 4 septa, microconidia, phialides, and abundant chlamydospores. All Fusarium isolates were able to produce esterase and phospholipase under the experimental conditions. However, a negative correlation was observed between these two enzymes, indicating that a Fusarium isolate with high phospholipase activity has low esterase activity and vice versa. In addition, Fusarium isolated from clinical material produced more phospholipases, while environmental strains produced more esterases. These observations may be correlated with the different types of substrates that these fungi need to degrade during their nutrition processes.
Resumo:
The P1.HTR cell line includes highly transfectable cells derived from P815 mastocytoma cells originating from mouse breast tissue. Despite its widespread use in immunogenic studies, no data are available about the behavior of P1.HTR cells in the chick embryo chorioallantoic membrane model. The objective of the present investigation was to study the effects of P1.HTR cells implanted on the chorioallantoic membrane of chick embryos. We inoculated P1.HTR cells into the previously prepared chick embryo chorioallantoic membrane and observed the early and late effects of these cells by stereomicroscopy, histochemistry and immunohistochemistry. A highly angiotropic and angiogenic effect occurred early after inoculation and a tumorigenic potential with the development of mastocytoma keeping well mast cells immunophenotype was detected later during the development. The P1.HTR mastocytoma cell line is a good tool for the development of the chick embryo chorioallantoic membrane mastocytoma model and also for other studies concerning the involvement of blood vessels. The chick embryo chorioallantoic membrane model of mastocytoma retains the mast cell immunophenotype under experimental conditions and could be used as an experimental tool for in vivo preliminary testing of antitumor and antivascular drugs.
Resumo:
The present study investigated the effect of thioperamide (THIO), an H3 histaminergic receptor antagonist, microinjected into the cerebellar vermis on emotional memory consolidation in male Swiss albino mice re-exposed to the elevated plus-maze (EPM). We implanted a guide cannula into the cerebellar vermis using stereotactic surgery. On the third day after surgery, we performed behavioral tests for two consecutive days. On the first day (exposure), the mice (n=10/group) were exposed to the EPM and received THIO (0.06, 0.3, or 1.5 ng/0.1 µL) immediately after the end of the session. Twenty-four hours later, the mice were re-exposed to the EPM under the same experimental conditions, but without drug injection. A reduction in the exploration of the open arms upon re-exposure to the EPM (percentage of number of entries and time spent in open arms) compared with the initial exposure was used as an indicator of learning and memory. One-way analysis of variance (ANOVA) followed by the Duncan post hoc test was used to analyze the data. Upon re-exposure, exploratory activity in the open arms was reduced in the control group, and with the two highest THIO doses: 0.3 and 1.5 ng/0.1 µL. No reduction was seen with the lowest THIO dose (0.06 ng/0.1 µL), indicating inhibition of the consolidation of emotional memory. None of the doses interfered with the animals' locomotor activity. We conclude that THIO at the lowest dose (0.06 ng/0.1 µL) microinjected into the cerebellum impaired emotional memory consolidation in mice.
Resumo:
This study investigated the effects of histamine H1 or H2 receptor antagonists on emotional memory consolidation in mice submitted to the elevated plus maze (EPM). The cerebellar vermis of male mice (Swiss albino) was implanted using a cannula guide. Three days after recovery, behavioral tests were performed in the EPM on 2 consecutive days (T1 and T2). Immediately after exposure to the EPM (T1), animals received a microinjection of saline (SAL) or the H1 antagonist chlorpheniramine (CPA; 0.016, 0.052, or 0.16 nmol/0.1 µL) in Experiment 1, and SAL or the H2 antagonist ranitidine (RA; 0.57, 2.85, or 5.7 nmol/0.1 µL) in Experiment 2. Twenty-four hours later, mice were reexposed to the EPM (T2) under the same experimental conditions but they did not receive any injection. Data were analyzed using one-way ANOVA and the Duncan test. In Experiment 1, mice microinjected with SAL and with CPA entered the open arms less often (%OAE) and spent less time in the open arms (%OAT) in T2, and there was no difference among groups. The results of Experiment 2 demonstrated that the values of %OAE and %OAT in T2 were lower compared to T1 for the groups that were microinjected with SAL and 2.85 nmol/0.1 µL RA. However, when animals were microinjected with 5.7 nmol/0.1 µL RA, they did not show a reduction in %OAE and %OAT. These results demonstrate that CPA did not affect behavior at the doses used in this study, while 5.7 nmol/0.1 µL RA induced impairment of memory consolidation in the EPM.