829 resultados para Evolutionary Psychology
Resumo:
Short interspersed nuclear elements (SINEs) are widespread among eukaryotic genomes. They are repetitive DNA sequences that have been amplified by retrotransposition. In this study, a class of SINEs were isolated from the Opsariichthys bidens genome, and named Opsar. Sequence analysis confirmed that Opsar is a new class of typical SINEs derived from tRNA molecules. With the tRNA-derived region of Opsar and through BLASTN search, we further identified Zb-SINEs from the zebrafish genome, which includes two groups: Zb-SINE-A and Zb-SINE-B. The Zb-SINE-A group comprises subfamilies of -Al--A5, and the Zb-SINE-B group is a dimer of the tRNA(Ala)-derived region and shares a similar dimeric composition to Alu. Zb-SINEs are composed of three distinct regions: a 5 end tRNA-derived region, a tRNA-unrelated region and a 3 end AT-rich region. The flanking regions are AT rich. The average length of Zb-SINEs elements is about 340 6p. Zb-SINEs account for as much as 0.1% of the whole zebrafish genome. About 70% of the Zb-SINEs are on chromosomes 11, 18, and 19. These Zb-SINEs were characterized by PCR and dot hybridization. The distribution pattern of Zb-SINEs in genome strongly supports the master genes model. The tRNA-derived regions of Opsar and Zb-SINEs were compared with the tRNA(Ala) gene, and they showed 76% similarity, indicating that Opsar and Zb-SINEs originated from an inactive tRNA(Ala) sequence or a tRNA(Ala)-like sequence. In view of the evolutionary status of zebrafish in the Cyprinidae, we deduced that Zb-SINEs were a very old class of interspersed sequences.
Resumo:
The coevolutionary dynamics between European bitterling Rhodeus amarus and freshwater unionid mussels, which the former parasitize by laying eggs on their gills, were tested. In a series of experiments fish preferences and mussel responses were compared in parasites and hosts of recent (Europe) and ancient (Asia) sympatry. Rhodeus amarus readily oviposited on the gills of all mussel species tested. Fish that laid their eggs on the gills of Asian Anodonta woodiana, however, suffered a dramatic reduction in reproductive success compared to fish that oviposited on the gills of European mussels: Unio pictorum, Unio tumidus, Anodonta anatina and Anodonta cygnea. This difference was the result of egg ejection behaviour by mussels rather than the unsuitability of the internal gill environment for European bitterling embryo development. The ejection response of mussels with a long sympatry with European bitterling was considerably more pronounced than that of mussels with a substantially shorter sympatry. The data support a coevolutionary arms race between bitterling and mussels and point to an evolutionary lag in the relationship between R. amarus and its European mussel hosts. (c) 2007 The Authors. Journal compilation (c) 2007 The Fisheries Society of the British Isles.
Resumo:
Hypothesis: In parasites that use hosts for offspring development, adults may base oviposition decisions on a range of host traits related either to host quality or the co-evolutionary relationship between parasite and host. We examined whether host quality or co-evolutionary dynamics drive the use of hosts in the bitterling-mussel relationship. Organisms: Six species of bitterling fish (Acheilognathinae) and eight species of freshwater mussels (Unionidae, Corbiculidae) that are used by bitterling for oviposition. Site of experiments: Experimental tanks in Wuhan, China, at the site of the natural distribution of the studied species. Methods: Three experiments that controlled for host accessibility and interspecific interactions were conducted to identify host preferences among bitterling fishes and their mussel hosts. We started with a broad interspecific comparison. We then tested bitterling behavioural choices, their temporal stability, and mussel host ejection behaviour of the eggs of generalist and specialist bitterling species. Finally, we measured host mussel quality based on respiration rate and used published studies on mussel gill structure to infer mussel suitability as hosts for bitterling eggs. Results: We found significant interspecific differences among bitterling species in their use of mussel hosts. Bitterling species varied in their level of host specificity and identity of preferred hosts. Host preferences were flexible even among apparently specialized species and fishes switched their preferences adaptively when the quality of individuals of preferred host species declined. Mussels varied considerably in their response to oviposition through egg ejections. Host preference by a generalist bitterling species correlated positively with host quality measured as the efficiency of the mussel gills to extract oxygen from inhaled water. Host ability to eject bitterling eggs correlated positively with their relative respiration rate, probably due to a higher velocity of water circulating in the mussel gill chamber.
Resumo:
It is widely accepted that mitochondrial DNA (mtDNA) control region evolves faster than protein encoding genes with few exceptions. In the present study, we sequenced the mitochondrial cytochrome b gene (cyt b) and control region (CR) and compared their rates in 93 specimens representing 67 species of loaches and some related taxa in the Cobitoidea (Order Cypriniformes). The results showed that sequence divergences of the CR were broadly higher than those of the cyt b (about 1.83 times). However, in considering only closely related species, CR sequence evolution was slower than that of cyt b gene (ratio of CR/cyt b is 0.78), a pattern that is found to be very common in Cypriniformes. Combined data of the cyt b and CR were used to estimate the phylogenetic relationship of the Cobitoidea by maximum parsimony, neighbor-joining, and Bayesian methods. With Cyprinus carpio and Danio rerio as outgroups, three analyses identified the same four lineages representing four subfamilies of loaches, with Botiinae on the basal-most clade. The phylogenctic relationship of the Cobitoidea was ((Catostomidae + Gyrinocheilidae) + (Botiinae + (Balitorinae + (Cobitinae + Nemacheilinae)))), which indicated that Sawada's Cobitidae (including Cobitinae and Botiinae) was not monophyletic. Our molecular phylogenetic analyses are in very close agreement with the phylogenetic results based on the morphological data proposed by Nalbant and Bianco, wherein these four subfamilies were elevated to the family level as Botiidae, Balitoridae, Cobitidae, and Nemacheilidae. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Full-length and partial genome sequences of four members of the genus Aquareovirus, family Reoviridae (Golden shiner reovirus, Grass carp reovirus, Striped bass reovirus and golden ide reovirus) were characterized. Based on sequence comparison, the unclassified Grass carp reovirus was shown to be a member of the species Aquareovirus C The status of golden ide reovirus, another unclassified aquareovirus, was also examined. Sequence analysis showed that it did not belong to the species Aquareovirus A or C, but assessment of its relationship to the species Aquareovirus B, D, E and F was hampered by the absence of genetic data from these species. In agreement with previous reports of ultrastructural resemblance between aquareoviruses and orthoreoviruses, genetic analysis revealed homology in the genes of the two groups. This homology concerned eight of the 11 segments of the aquareovirus genome (amino acid identity 17-42%), and similar genetic organization was observed in two other segments. The conserved terminal sequences in the genomes of members of the two groups were also similar. These data are undoubtedly an indication of the common evolutionary origin of these viruses. This clear genetic relatedness between members of distinct genera is unique within the family Reoviridae. Such a genetic relationship is usually observed between members of a single genus. However, the current taxonomic classification of aquareoviruses and orthoreoviruses in two different genera is supported by a number of characteristics, including their distinct G+C contents, unequal numbers of genome segments, absence of an antigenic relationship, different cytopathic effects and specific econiches.
Resumo:
Formyl peptide receptors (FPRs) were observed to expand in rodents and were recently suggested as candidate vomeronasal chemosensory receptors. Since vomeronasal chemosensory receptors usually underwent positive selection and evolved concordantly with the vomeronasal organ (VNO) morphology, we surveyed FPRs in primates in which VNO morphology is greatly diverse and thus it would provide us a clearer view of VNO-FPRs evolution. By screening available primate genome sequences, we obtained the FPR repertoires in representative primate species. As a result, we did not find FPR family size expansion in primates. Further analyses showed no evolutionary force variance between primates with or without VNO structure, which indicated that there was no functional divergence among primates FPRs. Our results suggest that primates lack the VNO-specific FPRs and the FPR expansion is not a common phenomenon in mammals outside rodent lineage, regardless of VNO complexity.
Resumo:
The geneswere cloned for the two apoprotein subunits, alpha and beta, of phycocyanin from the cyanobacterium Spirulina maxima (=Arthrospira maxima) strain F3. The alpha- and beta-subunit gene-coding regions contain 489 bp and 519 bp, respectively. The beta-subunit gene is upstream from the alpha-subunit gene, with a 111-bp segment separating them. Similarities between the alpha-subunits of S. maxima and nine other cyanobacteria were between 58% and 99%, as were those between the beta-subunits. The maximum similarity between the alpha- and beta-subunits from S. maxima was 27%.
Resumo:
Phytoene desaturase is one of the most important enzymes necessary for the biosynthesis of carotenoids in some cyanobacteria, green algae and plants. In this study, genomic DNA and cDNA of pds were cloned from unicellular green alga Haematococcus pluvialis strain323 using PCR and RT-PCR methods. The cDNA was cloned into plasmid pET-28a and efficiently expressed in Escherichia coli BL21. The complete genomic PDS gene of H. pluvialis, 3.3 kb in size, included eight exons and seven introns. To locate transcriptional regulation elements, an approximate 1 kb of 5'-flanking region was isolated by genome-walking method. Results of bioinformatic analysis showed several putative cis-elements e.g. the ABRE motif (abscisic acid responsive element), the C-repeat/DRE (dehydration responsive element) motif and the GCN4 motif were located in 5'-flanking region of pds. Results of phylogenetic analyses reveal that different sources of PDS genes form a separate clade, respectively, with 100% bootstrap support. Moreover, a maximum likelihood approach was employed to detect evidence of positive selection in the evolution of PDS genes. Results of branch-site model analysis suggest that 7.9% of sites along the green algal branch are under positive selection, and the PDS gene in green algae exhibits a different evolutionary pattern from its counterparts in cyanobacteria and plants.
Resumo:
Galloanserae is an ancient and diverse avian group, for which comprehensive molecular evidence relevant to phylogenetic analysis in the context of molecular chronology is lacking. In this study, we present two additional mitochondrial genome sequences of Galloanserae (the whistling duck, Dendrocygna javanica, and the black swan, Cygnus atratus) to broaden the scope of molecular phylogenetic reconstruction. The lengths of the whistling duck's and black swan's mitochondrial genomes are 16,753 and 16,748 bases, respectively. Phylogenetic analyses suggest that Dendrocygna is more likely to be in a basal position of the branch consisting of Anatinae and Anserinae, an affiliation that does not conform to its traditional classification. Bayesian approaches were employed to provide a rough timescale for Galloanserae evolution. In general, a narrow range of 95% confidence intervals gave younger estimates than those based on limited genes and estimated that at least two lineages originated before the Coniacian epoch around 90 MYA, well before the Cretaceous-Tertiary boundary. In addition, these results, which were compatible with estimates from fossil evidence, also imply that the origin of numerous genera in Anseriformes took place in the late Oligocene to early Miocene. Taken together, the results presented here provide a working framework for future research on Galloanserae evolution, and they underline the utility of whole mitochondrial genome sequences for the resolution of deep divergence.
Resumo:
Phycobiliproteins, together with linker polypeptides and various chromophores, are basic building blocks of phycobilisomes, a supramolecular complex with a light-harvesting function in cyanobacteria and red algae. Previous studies suggest that the different types of phycobiliproteins and the linker polypeptides originated from the same ancestor. Here we retrieve the phycobilisome-related genes from the well-annotated and even unfinished cyanobacteria genomes and find that many sites with elevated d(N)/d(S) ratios in different phycobiliprotein lineages are located in the chromophore-binding domain and the helical hairpin domains (X and Y). Covariation analyses also reveal that these sites are significantly correlated, showing strong evidence of the functional-structural importance of interactions among these residues. The potential selective pressure driving the diversification of phycobiliproteins may be related to the phycobiliprotein-chromophore microenvironment formation and the subunits interaction. Sites and genes identified here would provide targets for further research on the structural-functional role of these residues and energy transfer through the chromophores.
Resumo:
Based on the study of palaeo-environmental evolution in the shelves of the Eastern China Seas, the concept of ''shelf desertization'' in the late stage of Upper Pleistocene is defined; the environmental background and evolutionary process of shelf desertization are analysed. Study on the records of subbottom profiling and the data of core samples from shelf areas revealed that during low sea-level stages, the sedimentary environment in the exposed shelf plains was dominated by aeolian depositional process under cold and dry climatic conditions, i.e. under the action of strong winter-monsoon winds. Parts of the exposed marine strata were disintegrated, and aeolian sand dunes were formed on the disintegrated marine deposits, from which the finer sediment grains were blown away by wind and deposited in the downwind areas to form the derivative loess deposits. Thus a desertization environmental system was formed in the exposed shelf plains of the Eastern China Seas.