957 resultados para Evolutionary Computation
Resumo:
This paper presents a new hybrid evolutionary algorithm based on Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) for daily Volt/Var control in distribution system including Distributed Generators (DGs). Due to the small X/R ratio and radial configuration of distribution systems, DGs have much impact on this problem. Since DGs are independent power producers or private ownership, a price based methodology is proposed as a proper signal to encourage owners of DGs in active power generation. Generally, the daily Volt/Var control is a nonlinear optimization problem. Therefore, an efficient hybrid evolutionary method based on Particle Swarm Optimization and Ant Colony Optimization (ACO), called HPSO, is proposed to determine the active power values of DGs, reactive power values of capacitors and tap positions of transformers for the next day. The feasibility of the proposed algorithm is demonstrated and compared with methods based on the original PSO, ACO and GA algorithms on IEEE 34-bus distribution feeder.
Resumo:
This paper presents an efficient hybrid evolutionary optimization algorithm based on combining Ant Colony Optimization (ACO) and Simulated Annealing (SA), called ACO-SA, for distribution feeder reconfiguration (DFR) considering Distributed Generators (DGs). Due to private ownership of DGs, a cost based compensation method is used to encourage DGs in active and reactive power generation. The objective function is summation of electrical energy generated by DGs and substation bus (main bus) in the next day. The approach is tested on a real distribution feeder. The simulation results show that the proposed evolutionary optimization algorithm is robust and suitable for solving DFR problem.
Resumo:
This paper deals with an efficient hybrid evolutionary optimization algorithm in accordance with combining the ant colony optimization (ACO) and the simulated annealing (SA), so called ACO-SA. The distribution feeder reconfiguration (DFR) is known as one of the most important control schemes in the distribution networks, which can be affected by distributed generations (DGs) for the multi-objective DFR. In such a case, DGs is used to minimize the real power loss, the deviation of nodes voltage and the number of switching operations. The approach is carried out on a real distribution feeder, where the simulation results show that the proposed evolutionary optimization algorithm is robust and suitable for solving the DFR problem.
Resumo:
This is a discussion of the journal article: "Construcing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation". The article and discussion have appeared in the Journal of the Royal Statistical Society: Series B (Statistical Methodology).
Resumo:
We present a novel approach for developing summary statistics for use in approximate Bayesian computation (ABC) algorithms using indirect infer- ence. We embed this approach within a sequential Monte Carlo algorithm that is completely adaptive. This methodological development was motivated by an application involving data on macroparasite population evolution modelled with a trivariate Markov process. The main objective of the analysis is to compare inferences on the Markov process when considering two di®erent indirect mod- els. The two indirect models are based on a Beta-Binomial model and a three component mixture of Binomials, with the former providing a better ¯t to the observed data.
Resumo:
We study the natural problem of secure n-party computation (in the computationally unbounded attack model) of circuits over an arbitrary finite non-Abelian group (G,⋅), which we call G-circuits. Besides its intrinsic interest, this problem is also motivating by a completeness result of Barrington, stating that such protocols can be applied for general secure computation of arbitrary functions. For flexibility, we are interested in protocols which only require black-box access to the group G (i.e. the only computations performed by players in the protocol are a group operation, a group inverse, or sampling a uniformly random group element). Our investigations focus on the passive adversarial model, where up to t of the n participating parties are corrupted.
Resumo:
Classical results in unconditionally secure multi-party computation (MPC) protocols with a passive adversary indicate that every n-variate function can be computed by n participants, such that no set of size t < n/2 participants learns any additional information other than what they could derive from their private inputs and the output of the protocol. We study unconditionally secure MPC protocols in the presence of a passive adversary in the trusted setup (‘semi-ideal’) model, in which the participants are supplied with some auxiliary information (which is random and independent from the participant inputs) ahead of the protocol execution (such information can be purchased as a “commodity” well before a run of the protocol). We present a new MPC protocol in the trusted setup model, which allows the adversary to corrupt an arbitrary number t < n of participants. Our protocol makes use of a novel subprotocol for converting an additive secret sharing over a field to a multiplicative secret sharing, and can be used to securely evaluate any n-variate polynomial G over a field F, with inputs restricted to non-zero elements of F. The communication complexity of our protocol is O(ℓ · n 2) field elements, where ℓ is the number of non-linear monomials in G. Previous protocols in the trusted setup model require communication proportional to the number of multiplications in an arithmetic circuit for G; thus, our protocol may offer savings over previous protocols for functions with a small number of monomials but a large number of multiplications.
Resumo:
The standard approach to industrial economics starts with the industry’s basic conditions, then runs through the structure–conduct–performance paradigm of industrial organization, and finally considers government regulation and policy. Most creative industries segments have been studied in this way, for example in Albarran (2002) and Caves (2000). These approaches use standard economic analysis to explain the particular properties and characteristics of a specific industrial sector. The overview presented here is different again. It focuses on the creative industries and examines their economic effect, specifically their contribution to economic evolu -tion. This is an evolutionary systems approach to industrial analysis, where we seek to understand how a sector fits into a broader system of production, consumption, technology, trade and institutions. The evolutionary approach focuses on innovation, economic growth and endogenous transformation. So, rather than using economics to explain static or industrial-organization features of the creative industries, we are using an open systems view of the creative industries to explain dynamic ‘Schumpeterian’ features of the broader economy. The creative industries are drivers of economic transformation through their role in the origination of new ideas, in consumer adoption, and in facilitating the institutional embedding of new ideas into the economic order. This is not a novel idea, as economists have long understood that particular activities are drivers of economic growth and development, for example research and development, and also that particular sectors are instrumental to this process, for example high-technology sectors. What is new is the argument that cultural and creative sectors are also a key part of this process of economic evolution. We will review the case for that claim, and outline purported mechanisms. We will also consider why policy settings in the creative industries should be more in line with innovation and growth policy than with industry policy.
Resumo:
Most previous work on unconditionally secure multiparty computation has focused on computing over a finite field (or ring). Multiparty computation over other algebraic structures has not received much attention, but is an interesting topic whose study may provide new and improved tools for certain applications. At CRYPTO 2007, Desmedt et al introduced a construction for a passive-secure multiparty multiplication protocol for black-box groups, reducing it to a certain graph coloring problem, leaving as an open problem to achieve security against active attacks. We present the first n-party protocol for unconditionally secure multiparty computation over a black-box group which is secure under an active attack model, tolerating any adversary structure Δ satisfying the Q 3 property (in which no union of three subsets from Δ covers the whole player set), which is known to be necessary for achieving security in the active setting. Our protocol uses Maurer’s Verifiable Secret Sharing (VSS) but preserves the essential simplicity of the graph-based approach of Desmedt et al, which avoids each shareholder having to rerun the full VSS protocol after each local computation. A corollary of our result is a new active-secure protocol for general multiparty computation of an arbitrary Boolean circuit.
Resumo:
The application of artificial neural networks (ANN) in finance is relatively new area of research. We employed ANNs that used both fundamental and technical inputs to predict future prices of widely held Australian stocks and used these predicted prices for stock portfolio selection over a 10-year period (2001-2011). We found that the ANNs generally do well in predicting the direction of stock price movements. The stock portfolios selected by the ANNs with median accuracy are able to generate positive alpha over the 10-year period. More importantly, we found that a portfolio based on randomly selected network configuration had zero chance of resulting in a significantly negative alpha but a 27% chance of yielding a significantly positive alpha. This is in stark contrast to the findings of the research on mutual fund performance where active fund managers with negative alphas outnumber those with positive alphas.
Resumo:
Secure multi-party computation (MPC) protocols enable a set of n mutually distrusting participants P 1, ..., P n , each with their own private input x i , to compute a function Y = F(x 1, ..., x n ), such that at the end of the protocol, all participants learn the correct value of Y, while secrecy of the private inputs is maintained. Classical results in the unconditionally secure MPC indicate that in the presence of an active adversary, every function can be computed if and only if the number of corrupted participants, t a , is smaller than n/3. Relaxing the requirement of perfect secrecy and utilizing broadcast channels, one can improve this bound to t a < n/2. All existing MPC protocols assume that uncorrupted participants are truly honest, i.e., they are not even curious in learning other participant secret inputs. Based on this assumption, some MPC protocols are designed in such a way that after elimination of all misbehaving participants, the remaining ones learn all information in the system. This is not consistent with maintaining privacy of the participant inputs. Furthermore, an improvement of the classical results given by Fitzi, Hirt, and Maurer indicates that in addition to t a actively corrupted participants, the adversary may simultaneously corrupt some participants passively. This is in contrast to the assumption that participants who are not corrupted by an active adversary are truly honest. This paper examines the privacy of MPC protocols, and introduces the notion of an omnipresent adversary, which cannot be eliminated from the protocol. The omnipresent adversary can be either a passive, an active or a mixed one. We assume that up to a minority of participants who are not corrupted by an active adversary can be corrupted passively, with the restriction that at any time, the number of corrupted participants does not exceed a predetermined threshold. We will also show that the existence of a t-resilient protocol for a group of n participants, implies the existence of a t’-private protocol for a group of n′ participants. That is, the elimination of misbehaving participants from a t-resilient protocol leads to the decomposition of the protocol. Our adversary model stipulates that a MPC protocol never operates with a set of truly honest participants (which is a more realistic scenario). Therefore, privacy of all participants who properly follow the protocol will be maintained. We present a novel disqualification protocol to avoid a loss of privacy of participants who properly follow the protocol.
Resumo:
Two lecture notes describe recent developments of evolutionary multi objective optimization (MO) techniques in detail and their advantages and drawbacks compared to traditional deterministic optimisers. The role of Game Strategies (GS), such as Pareto, Nash or Stackelberg games as companions or pre-conditioners of Multi objective Optimizers is presented and discussed on simple mathematical functions in Part I , as well as their implementations on simple aeronautical model optimisation problems on the computer using a friendly design framework in Part II. Real life (robust) design applications dealing with UAVs systems or Civil Aircraft and using the EAs and Game Strategies combined material of Part I & Part II are solved and discussed in Part III providing the designer new compromised solutions useful to digital aircraft design and manufacturing. Many details related to Lectures notes Part I, Part II and Part III can be found by the reader in [68].
Resumo:
The placement of the mappers and reducers on the machines directly affects the performance and cost of the MapReduce computation in cloud computing. From the computational point of view, the mappers/reducers placement problem is a generalization of the classical bin packing problem, which is NP-complete. Thus, in this paper we propose a new heuristic algorithm for the mappers/reducers placement problem in cloud computing and evaluate it by comparing with other several heuristics on solution quality and computation time by solving a set of test problems with various characteristics. The computational results show that our heuristic algorithm is much more efficient than the other heuristics. Also, we verify the effectiveness of our heuristic algorithm by comparing the mapper/reducer placement for a benchmark problem generated by our heuristic algorithm with a conventional mapper/reducer placement. The comparison results show that the computation using our mapper/reducer placement is much cheaper while still satisfying the computation deadline.
Resumo:
Suppose two parties, holding vectors A = (a 1,a 2,...,a n ) and B = (b 1,b 2,...,b n ) respectively, wish to know whether a i > b i for all i, without disclosing any private input. This problem is called the vector dominance problem, and is closely related to the well-studied problem for securely comparing two numbers (Yao’s millionaires problem). In this paper, we propose several protocols for this problem, which improve upon existing protocols on round complexity or communication/computation complexity.
Resumo:
This article addresses the problem of estimating the Quality of Service (QoS) of a composite service given the QoS of the services participating in the composition. Previous solutions to this problem impose restrictions on the topology of the orchestration models, limiting their applicability to well-structured orchestration models for example. This article lifts these restrictions by proposing a method for aggregate QoS computation that deals with more general types of unstructured orchestration models. The applicability and scalability of the proposed method are validated using a collection of models from industrial practice.