928 resultados para Euler, Leonhard
Resumo:
This paper examines two passive techniques for vibration reduction in mechanical systems: the first one is based on dynamic vibration absorbers (DVAs) and the second uses resonant circuit shunted (RCS) piezoceramics. Genetic algorithms are used to determine the optimal design parameters with respect to performance indexes, which are associated with the dynamical behavior of the system over selected frequency bands. The calculation of the frequency response functions (FRFs) of the composite structure (primary system + DVAs) is performed through a substructure coupling technique. A modal technique is used to determine the frequency response function of the structure containing shunted piezoceramics which are bonded to the primary structure. The use of both techniques simultaneously on the same structure is investigated. The methodology developed is illustrated by numerical applications in which the primary structure is represented by simple Euler-Bernoulli beams. However, the design aspects of vibration control devices presented in this paper can be extended to more complex structures.
Resumo:
One of the main complexities in the simulation of the nonlinear dynamics of rigid bodies consists in describing properly the finite rotations that they may undergo. It is well known that, to avoid singularities in the representation of the SO(3) rotation group, at least four parameters must be used. However, it is computationally expensive to use a four-parameters representation since, as only three of the parameters are independent, one needs to introduce constraint equations in the model, leading to differential-algebraic equations instead of ordinary differential ones. Three-parameter representations are numerically more efficient. Therefore, the objective of this paper is to evaluate numerically the influence of the parametrization and its singularities on the simulation of the dynamics of a rigid body. This is done through the analysis of a heavy top with a fixed point, using two three-parameter systems, Euler's angles and rotation vector. Theoretical results were used to guide the numerical simulation and to assure that all possible cases were analyzed. The two parametrizations were compared using several integrators. The results show that Euler's angles lead to faster integration compared to the rotation vector. An Euler's angles singular case, where representation approaches a theoretical singular point, was analyzed in detail. It is shown that on the contrary of what may be expected, 1) the numerical integration is very efficient, even more than for any other case, and 2) in spite of the uncertainty on the Euler's angles themselves, the body motion is well represented.
Resumo:
Products developed at industries, institutes and research centers are expected to have high level of quality and performance, having a minimum waste, which require efficient and robust tools to numerically simulate stringent project conditions with great reliability. In this context, Computational Fluid Dynamics (CFD) plays an important role and the present work shows two numerical algorithms that are used in the CFD community to solve the Euler and Navier-Stokes equations applied to typical aerospace and aeronautical problems. Particularly, unstructured discretization of the spatial domain has gained special attention by the international community due to its ease in discretizing complex spatial domains. This work has the main objective of illustrating some advantages and disadvantages of numerical algorithms using structured and unstructured spatial discretization of the flow governing equations. Numerical methods include a finite volume formulation and the Euler and Navier-Stokes equations are applied to solve a transonic nozzle problem, a low supersonic airfoil problem and a hypersonic inlet problem. In a structured context, these problems are solved using MacCormacks implicit algorithm with Steger and Warmings flux vector splitting technique, while, in an unstructured context, Jameson and Mavriplis explicit algorithm is used. Convergence acceleration is obtained using a spatially variable time stepping procedure.
Resumo:
Stochastic differential equation (SDE) is a differential equation in which some of the terms and its solution are stochastic processes. SDEs play a central role in modeling physical systems like finance, Biology, Engineering, to mention some. In modeling process, the computation of the trajectories (sample paths) of solutions to SDEs is very important. However, the exact solution to a SDE is generally difficult to obtain due to non-differentiability character of realizations of the Brownian motion. There exist approximation methods of solutions of SDE. The solutions will be continuous stochastic processes that represent diffusive dynamics, a common modeling assumption for financial, Biology, physical, environmental systems. This Masters' thesis is an introduction and survey of numerical solution methods for stochastic differential equations. Standard numerical methods, local linearization methods and filtering methods are well described. We compute the root mean square errors for each method from which we propose a better numerical scheme. Stochastic differential equations can be formulated from a given ordinary differential equations. In this thesis, we describe two kind of formulations: parametric and non-parametric techniques. The formulation is based on epidemiological SEIR model. This methods have a tendency of increasing parameters in the constructed SDEs, hence, it requires more data. We compare the two techniques numerically.
Resumo:
The main topic of the thesis is optimal stopping. This is treated in two research articles. In the first article we introduce a new approach to optimal stopping of general strong Markov processes. The approach is based on the representation of excessive functions as expected suprema. We present a variety of examples, in particular, the Novikov-Shiryaev problem for Lévy processes. In the second article on optimal stopping we focus on differentiability of excessive functions of diffusions and apply these results to study the validity of the principle of smooth fit. As an example we discuss optimal stopping of sticky Brownian motion. The third research article offers a survey like discussion on Appell polynomials. The crucial role of Appell polynomials in optimal stopping of Lévy processes was noticed by Novikov and Shiryaev. They described the optimal rule in a large class of problems via these polynomials. We exploit the probabilistic approach to Appell polynomials and show that many classical results are obtained with ease in this framework. In the fourth article we derive a new relationship between the generalized Bernoulli polynomials and the generalized Euler polynomials.
Resumo:
Variantti A.
Resumo:
Variantti C.
Resumo:
A transferência de um soluto (cloreto de sódio), através de uma matriz sólida tridimensional (queijo) foi estudada aplicando-se o método de elementos finitos. A formulação variacional (Galerkin) do problema diferencial (modelo de difusão) teve como base teórica a 2ª lei de Fick. Os procedimentos para integração no tempo foram o de Crank-Nicolson e o de Euler-modificado, que foram escolhidos por apresentarem estabilidade incondicional. O programa computacional desenvolvido mostrou-se versátil para resolver situações de amostragem em condições mais realistas e pode ser aplicado para geometrias complexas. O modelo proposto permitiu uma boa estimativa do ganho de sal no queijo, usando um coeficiente de difusão cujo valor pode ser obtido por extrapolação de dados experimentais. A aplicação do método numérico (MEF), com o esquema de Crank-Nicolson, na simulação da difusão do cloreto de sódio na salga de queijos, mostrou boa aproximação quando os resultados foram comparados com os valores experimentais encontrados na literatura especializada.
Resumo:
In This Paper Several Additional Gmm Specification Tests Are Studied. a First Test Is a Chow-Type Test for Structural Parameter Stability of Gmm Estimates. the Test Is Inspired by the Fact That \"Taste and Technology\" Parameters Are Uncovered. the Second Set of Specification Tests Are Var Encompassing Tests. It Is Assumed That the Dgp Has a Finite Var Representation. the Moment Restrictions Which Are Suggested by Economic Theory and Exploited in the Gmm Procedure Represent One Possible Characterization of the Dgp. the Var Is a Different But Compatible Characterization of the Same Dgp. the Idea of the Var Encompassing Tests Is to Compare Parameter Estimates of the Euler Conditions and Var Representations of the Dgp Obtained Separately with Parameter Estimates of the Euler Conditions and Var Representations Obtained Jointly. There Are Several Ways to Construct Joint Systems Which Are Discussed in the Paper. Several Applications Are Also Discussed.
Resumo:
Thèse diffusée initialement dans le cadre d'un projet pilote des Presses de l'Université de Montréal/Centre d'édition numérique UdeM (1997-2008) avec l'autorisation de l'auteur.
Resumo:
En simulant l’écoulement du sang dans un réseau de capillaires (en l’absence de contrôle biologique), il est possible d’observer la présence d’oscillations de certains paramètres comme le débit volumique, la pression et l’hématocrite (volume des globules rouges par rapport au volume du sang total). Ce comportement semble être en concordance avec certaines expériences in vivo. Malgré cet accord, il faut se demander si les fluctuations observées lors des simulations de l’écoulement sont physiques, numériques ou un artefact de modèles irréalistes puisqu’il existe toujours des différences entre des modélisations et des expériences in vivo. Pour répondre à cette question de façon satisfaisante, nous étudierons et analyserons l’écoulement du sang ainsi que la nature des oscillations observées dans quelques réseaux de capillaires utilisant un modèle convectif et un modèle moyenné pour décrire les équations de conservation de masse des globules rouges. Ces modèles tiennent compte de deux effets rhéologiques importants : l’effet Fåhraeus-Lindqvist décrivant la viscosité apparente dans un vaisseau et l’effet de séparation de phase schématisant la distribution des globules rouges aux points de bifurcation. Pour décrire ce dernier effet, deux lois de séparation de phase (les lois de Pries et al. et de Fenton et al.) seront étudiées et comparées. Dans ce mémoire, nous présenterons une description du problème physiologique (rhéologie du sang). Nous montrerons les modèles mathématiques employés (moyenné et convectif) ainsi que les lois de séparation de phase (Pries et al. et Fenton et al.) accompagnés d’une analyse des schémas numériques implémentés. Pour le modèle moyenné, nous employons le schéma numérique explicite traditionnel d’Euler ainsi qu’un nouveau schéma implicite qui permet de résoudre ce problème d’une manière efficace. Ceci est fait en utilisant une méthode de Newton- Krylov avec gradient conjugué préconditionné et la méthode de GMRES pour les itérations intérieures ainsi qu’une méthode quasi-Newton (la méthode de Broyden). Cette méthode inclura le schéma implicite d’Euler et la méthode des trapèzes. Pour le schéma convectif, la méthode explicite de Kiani et al. sera implémentée ainsi qu’une nouvelle approche implicite. La stabilité des deux modèles sera également explorée. À l’aide de trois différentes topologies, nous comparerons les résultats de ces deux modèles mathématiques ainsi que les lois de séparation de phase afin de déterminer dans quelle mesure les oscillations observées peuvent être attribuables au choix des modèles mathématiques ou au choix des méthodes numériques.
Resumo:
Les données provenant de l'échantillonnage fin d'un processus continu (champ aléatoire) peuvent être représentées sous forme d'images. Un test statistique permettant de détecter une différence entre deux images peut être vu comme un ensemble de tests où chaque pixel est comparé au pixel correspondant de l'autre image. On utilise alors une méthode de contrôle de l'erreur de type I au niveau de l'ensemble de tests, comme la correction de Bonferroni ou le contrôle du taux de faux-positifs (FDR). Des méthodes d'analyse de données ont été développées en imagerie médicale, principalement par Keith Worsley, utilisant la géométrie des champs aléatoires afin de construire un test statistique global sur une image entière. Il s'agit d'utiliser l'espérance de la caractéristique d'Euler de l'ensemble d'excursion du champ aléatoire sous-jacent à l'échantillon au-delà d'un seuil donné, pour déterminer la probabilité que le champ aléatoire dépasse ce même seuil sous l'hypothèse nulle (inférence topologique). Nous exposons quelques notions portant sur les champs aléatoires, en particulier l'isotropie (la fonction de covariance entre deux points du champ dépend seulement de la distance qui les sépare). Nous discutons de deux méthodes pour l'analyse des champs anisotropes. La première consiste à déformer le champ puis à utiliser les volumes intrinsèques et les compacités de la caractéristique d'Euler. La seconde utilise plutôt les courbures de Lipschitz-Killing. Nous faisons ensuite une étude de niveau et de puissance de l'inférence topologique en comparaison avec la correction de Bonferroni. Finalement, nous utilisons l'inférence topologique pour décrire l'évolution du changement climatique sur le territoire du Québec entre 1991 et 2100, en utilisant des données de température simulées et publiées par l'Équipe Simulations climatiques d'Ouranos selon le modèle régional canadien du climat.
Resumo:
The motion instability is an important issue that occurs during the operation of towed underwater vehicles (TUV), which considerably affects the accuracy of high precision acoustic instrumentations housed inside the same. Out of the various parameters responsible for this, the disturbances from the tow-ship are the most significant one. The present study focus on the motion dynamics of an underwater towing system with ship induced disturbances as the input. The study focus on an innovative system called two-part towing. The methodology involves numerical modeling of the tow system, which consists of modeling of the tow-cables and vehicles formulation. Previous study in this direction used a segmental approach for the modeling of the cable. Even though, the model was successful in predicting the heave response of the tow-body, instabilities were observed in the numerical solution. The present study devises a simple approach called lumped mass spring model (LMSM) for the cable formulation. In this work, the traditional LMSM has been modified in two ways. First, by implementing advanced time integration procedures and secondly, use of a modified beam model which uses only translational degrees of freedoms for solving beam equation. A number of time integration procedures, such as Euler, Houbolt, Newmark and HHT-α were implemented in the traditional LMSM and the strength and weakness of each scheme were numerically estimated. In most of the previous studies, hydrodynamic forces acting on the tow-system such as drag and lift etc. are approximated as analytical expression of velocities. This approach restricts these models to use simple cylindrical shaped towed bodies and may not be applicable modern tow systems which are diversed in shape and complexity. Hence, this particular study, hydrodynamic parameters such as drag and lift of the tow-system are estimated using CFD techniques. To achieve this, a RANS based CFD code has been developed. Further, a new convection interpolation scheme for CFD simulation, called BNCUS, which is blend of cell based and node based formulation, was proposed in the study and numerically tested. To account for the fact that simulation takes considerable time in solving fluid dynamic equations, a dedicated parallel computing setup has been developed. Two types of computational parallelisms are explored in the current study, viz; the model for shared memory processors and distributed memory processors. In the present study, shared memory model was used for structural dynamic analysis of towing system, distributed memory one was devised in solving fluid dynamic equations.
Resumo:
In the present paper we concentrate on solving sequences of nonsymmetric linear systems with block structure arising from compressible flow problems. We attempt to improve the solution process by sharing part of the computational effort throughout the sequence. This is achieved by application of a cheap updating technique for preconditioners which we adapted in order to be used for our applications. Tested on three benchmark compressible flow problems, the strategy speeds up the entire computation with an acceleration being particularly pronounced in phases of instationary behavior.