985 resultados para Error estimate.
Resumo:
This paper proposes an algorithm for joint data detection and tracking of the dominant singular mode of a time varying channel at the transmitter and receiver of a time division duplex multiple input multiple output beamforming system. The method proposed is a modified expectation maximization algorithm which utilizes an initial estimate to track the dominant modes of the channel at the transmitter and the receiver blindly; and simultaneously detects the un known data. Furthermore, the estimates are constrained to be within a confidence interval of the previous estimate in order to improve the tracking performance and mitigate the effect of error propagation. Monte-Carlo simulation results of the symbol error rate and the mean square inner product between the estimated and the true singular vector are plotted to show the performance benefits offered by the proposed method compared to existing techniques.
Resumo:
Algorithms for adaptive mesh refinement using a residual error estimator are proposed for fluid flow problems in a finite volume framework. The residual error estimator, referred to as the R-parameter is used to derive refinement and coarsening criteria for the adaptive algorithms. An adaptive strategy based on the R-parameter is proposed for continuous flows, while a hybrid adaptive algorithm employing a combination of error indicators and the R-parameter is developed for discontinuous flows. Numerical experiments for inviscid and viscous flows on different grid topologies demonstrate the effectiveness of the proposed algorithms on arbitrary polygonal grids.
Resumo:
A fully discrete C-0 interior penalty finite element method is proposed and analyzed for the Extended Fisher-Kolmogorov (EFK) equation u(t) + gamma Delta(2)u - Delta u + u(3) - u = 0 with appropriate initial and boundary conditions, where gamma is a positive constant. We derive a regularity estimate for the solution u of the EFK equation that is explicit in gamma and as a consequence we derive a priori error estimates that are robust in gamma. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Increasing concentrations of atmospheric CO2 influence climate, terrestrial biosphere productivity and ecosystem carbon storage through its radiative, physiological and fertilization effects. In this paper, we quantify these effects for a doubling of CO2 using a low resolution configuration of the coupled model NCAR CCSM4. In contrast to previous coupled climate-carbon modeling studies, we focus on the near-equilibrium response of the terrestrial carbon cycle. For a doubling of CO2, the radiative effect on the physical climate system causes global mean surface air temperature to increase by 2.14 K, whereas the physiological and fertilization on the land biosphere effects cause a warming of 0.22 K, suggesting that these later effects increase global warming by about 10 % as found in many recent studies. The CO2-fertilization leads to total ecosystem carbon gain of 371 Gt-C (28 %) while the radiative effect causes a loss of 131 Gt-C (10 %) indicating that climate warming damps the fertilization-induced carbon uptake over land. Our model-based estimate for the maximum potential terrestrial carbon uptake resulting from a doubling of atmospheric CO2 concentration (285-570 ppm) is only 242 Gt-C. This highlights the limited storage capacity of the terrestrial carbon reservoir. We also find that the terrestrial carbon storage sensitivity to changes in CO2 and temperature have been estimated to be lower in previous transient simulations because of lags in the climate-carbon system. Our model simulations indicate that the time scale of terrestrial carbon cycle response is greater than 500 years for CO2-fertilization and about 200 years for temperature perturbations. We also find that dynamic changes in vegetation amplify the terrestrial carbon storage sensitivity relative to a static vegetation case: because of changes in tree cover, changes in total ecosystem carbon for CO2-direct and climate effects are amplified by 88 and 72 %, respectively, in simulations with dynamic vegetation when compared to static vegetation simulations.
Resumo:
The goal of speech enhancement algorithms is to provide an estimate of clean speech starting from noisy observations. The often-employed cost function is the mean square error (MSE). However, the MSE can never be computed in practice. Therefore, it becomes necessary to find practical alternatives to the MSE. In image denoising problems, the cost function (also referred to as risk) is often replaced by an unbiased estimator. Motivated by this approach, we reformulate the problem of speech enhancement from the perspective of risk minimization. Some recent contributions in risk estimation have employed Stein's unbiased risk estimator (SURE) together with a parametric denoising function, which is a linear expansion of threshold/bases (LET). We show that the first-order case of SURE-LET results in a Wiener-filter type solution if the denoising function is made frequency-dependent. We also provide enhancement results obtained with both techniques and characterize the improvement by means of local as well as global SNR calculations.
Resumo:
Reliable estimates of species density are fundamental to planning conservation strategies for any species; further, it is equally crucial to identify the most appropriate technique to estimate animal density. Nocturnal, small-sized animal species are notoriously difficult to census accurately and this issue critically affects their conservation status, We carried out a field study in southern India to estimate the density of slender loris, a small-sized nocturnal primate using line and strip transects. Actual counts of study individuals yielded a density estimate of 1.61 ha(-1); density estimate from line transects was 1.08 ha(-1); and density estimates varied from 1.06 ha(-1) to 0.59 ha(-1) in different fixed-width strip transects. We conclude that line and strip transects may typically underestimate densities of cryptic, nocturnal primates.
Resumo:
Given the significant gains that relay-based cooperation promises, the practical problems of acquisition of channel state information (CSI) and the characterization and optimization of performance with imperfect CSI are receiving increasing attention. We develop novel and accurate expressions for the symbol error probability (SEP) for fixed-gain amplify-and-forward relaying when the destination acquires CSI using the time-efficient cascaded channel estimation (CCE) protocol. The CCE protocol saves time by making the destination directly estimate the product of the source-relay and relay-destination channel gains. For a single relay system, we first develop a novel SEP expression and a tight SEP upper bound. We then similarly analyze an opportunistic multi-relay system, in which both selection and coherent demodulation use imperfect estimates. A distinctive aspect of our approach is the use of as few simplifying approximations as possible, which results in new results that are accurate at signal-to-noise-ratios as low as 1 dB for single and multi-relay systems. Using insights gleaned from an asymptotic analysis, we also present a simple, closed-form, nearly-optimal solution for allocation of energy between pilot and data symbols at the source and relay(s).
Resumo:
Wind stress is the most important ocean forcing for driving tropical surface currents. Stress can be estimated from scatterometer-reported wind measurements at 10 m that have been extrapolated to the surface, assuming a neutrally stable atmosphere and no surface current. Scatterometer calibration is designed to account for the assumption of neutral stability; however, the assumption of a particular sea state and negligible current often introduces an error in wind stress estimations. Since the fundamental scatterometer measurement is of the surface radar backscatter (sigma-0) which is related to surface roughness and, thus, stress, we develop a method to estimate wind stress directly from the scatterometer measurements of sigma-0 and their associated azimuth angle and incidence angle using a neural network approach. We compare the results with in situ estimations and observe that the wind stress estimations from this approach are more accurate compared with those obtained from the conventional estimations using 10-m-height wind measurements.
Resumo:
Single receive antenna selection (AS) is a popular method for obtaining diversity benefits without the additional costs of multiple radio receiver chains. Since only one antenna receives at any time, the transmitter sends a pilot multiple times to enable the receiver to estimate the channel gains of its N antennas to the transmitter and select an antenna. In time-varying channels, the channel estimates of different antennas are outdated to different extents. We analyze the symbol error probability (SEP) in time-varying channels of the N-pilot and (N+1)-pilot AS training schemes. In the former, the transmitter sends one pilot for each receive antenna. In the latter, the transmitter sends one additional pilot that helps sample the channel fading process of the selected antenna twice. We present several new results about the SEP, optimal energy allocation across pilots and data, and optimal selection rule in time-varying channels for the two schemes. We show that due to the unique nature of AS, the (N+1)-pilot scheme, despite its longer training duration, is much more energy-efficient than the conventional N-pilot scheme. An extension to a practical scenario where all data symbols of a packet are received by the same antenna is also investigated.
Resumo:
Maximum likelihood (ML) algorithms, for the joint estimation of synchronisation impairments and channel in multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) system, are investigated in this work. A system model that takes into account the effects of carrier frequency offset, sampling frequency offset, symbol timing error and channel impulse response is formulated. Cramer-Rao lower bounds for the estimation of continuous parameters are derived, which show the coupling effect among different impairments and the significance of the joint estimation. The authors propose an ML algorithm for the estimation of synchronisation impairments and channel together, using the grid search method. To reduce the complexity of the joint grid search in the ML algorithm, a modified ML (MML) algorithm with multiple one-dimensional searches is also proposed. Further, a stage-wise ML (SML) algorithm using existing algorithms, which estimate less number of parameters, is also proposed. Performance of the estimation algorithms is studied through numerical simulations and it is found that the proposed ML and MML algorithms exhibit better performance than SML algorithm.
Resumo:
In this paper, we propose a cooperative particle swarm optimization (CPSO) based channel estimation/equalization scheme for multiple-input multiple-output zero-padded single-carrier (MIMO-ZPSC) systems with large dimensions in frequency selective channels. We estimate the channel state information at the receiver in time domain using a PSO based algorithm during training phase. Using the estimated channel, we perform information symbol detection in the frequency domain using FFT based processing. For this detection, we use a low complexity OLA (OverLap Add) likelihood ascent search equalizer which uses minimum mean square (MMSE) equalizer solution as the initial solution. Multiple iterations between channel estimation and data detection are carried out which significantly improves the mean square error and bit error rate performance of the receiver.
Resumo:
Matroidal networks were introduced by Dougherty et al. and have been well studied in the recent past. It was shown that a network has a scalar linear network coding solution if and only if it is matroidal associated with a representable matroid. The current work attempts to establish a connection between matroid theory and network-error correcting codes. In a similar vein to the theory connecting matroids and network coding, we abstract the essential aspects of network-error correcting codes to arrive at the definition of a matroidal error correcting network. An acyclic network (with arbitrary sink demands) is then shown to possess a scalar linear error correcting network code if and only if it is a matroidal error correcting network associated with a representable matroid. Therefore, constructing such network-error correcting codes implies the construction of certain representable matroids that satisfy some special conditions, and vice versa.
Resumo:
This paper considers the design of a power-controlled reverse channel training (RCT) scheme for spatial multiplexing (SM)-based data transmission along the dominant modes of the channel in a time-division duplex (TDD) multiple-input and multiple-output (MIMO) system, when channel knowledge is available at the receiver. A channel-dependent power-controlled RCT scheme is proposed, using which the transmitter estimates the beamforming (BF) vectors required for the forward-link SM data transmission. Tight approximate expressions for 1) the mean square error (MSE) in the estimate of the BF vectors, and 2) a capacity lower bound (CLB) for an SM system, are derived and used to optimize the parameters of the training sequence. Moreover, an extension of the channel-dependent training scheme and the data rate analysis to a multiuser scenario with M user terminals is presented. For the single-mode BF system, a closed-form expression for an upper bound on the average sum data rate is derived, which is shown to scale as ((L-c - L-B,L- tau)/L-c) log logM asymptotically in M, where L-c and L-B,L- tau are the channel coherence time and training duration, respectively. The significant performance gain offered by the proposed training sequence over the conventional constant-power orthogonal RCT sequence is demonstrated using Monte Carlo simulations.
Resumo:
There is a strong relation between sparse signal recovery and error control coding. It is known that burst errors are block sparse in nature. So, here we attempt to solve burst error correction problem using block sparse signal recovery methods. We construct partial Fourier based encoding and decoding matrices using results on difference sets. These constructions offer guaranteed and efficient error correction when used in conjunction with reconstruction algorithms which exploit block sparsity.