874 resultados para English for Content and Language Integrated Learning (CLIL)
Resumo:
This factsheet gives advice to parents on the use of dummies and their effect on a child's speech.
Resumo:
Peer-reviewed
Resumo:
Feathers confer protection against biophysical agents and determine flying ability. The geometry and arrangement of the barbs, together with the keratin and pigments deposited in the feathers, determine the mechanical stability of the vane, and its stiffness and resistance to abrasive agents. In colour-polymorphic species, individuals display alternative colour morphs, which can be associated with different foraging strategies. Each morph may therefore require specific flying abilities, and their feathers may be exposed to different abrasive agents. Feathers of differently coloured individuals may thus have a specific structure, and colour pigments may help resist abrasive agents and improve stiffness. We examined these predictions in the barn owl (Tyto alba), a species for which the ventral body side varies from white to dark reddish pheomelanic, and in the number and size of black spots located at the tip of the feathers. White and reddish birds show different foraging strategies, and the size of black feather spots is associated with several phenotypic attributes. We found that birds displaying a darker reddish coloration on the ventral body side deposit more melanin pigments in their remiges, which also have fewer barbs. This suggests that wear resistance increases with darkness, whereas feathers of lighter coloured birds may bend less easily. Accordingly, individuals displaying a lighter reddish coloration on the ventral body side, and those displaying larger black spots, displayed more black transverse bars on their remiges: as larger-spotted individuals are heavier and longer-winged birds also have more transverse bars, these bars may reduce feather bending when flying. We conclude that differently coloured individuals produce wing feathers of different strengths to adopt alternative behavioural and life history strategies
Resumo:
We investigated procedural learning in 18 children with basal ganglia (BG) lesions or dysfunctions of various aetiologies, using a visuo-motor learning test, the Serial Reaction Time (SRT) task, and a cognitive learning test, the Probabilistic Classification Learning (PCL) task. We compared patients with early (<1 year old, n=9), later onset (>6 years old, n=7) or progressive disorder (idiopathic dystonia, n=2). All patients showed deficits in both visuo-motor and cognitive domains, except those with idiopathic dystonia, who displayed preserved classification learning skills. Impairments seem to be independent from the age of onset of pathology. As far as we know, this study is the first to investigate motor and cognitive procedural learning in children with BG damage. Procedural impairments were documented whatever the aetiology of the BG damage/dysfunction and time of pathology onset, thus supporting the claim of very early skill learning development and lack of plasticity in case of damage.
Resumo:
We argue that attitudes about immigration can be better understood by paying closer attention to the various ways in which national group boundaries are demarcated. We describe two related lines of work that address this. The first deals with national group definitions and, based on evidence from studies carried out in England and analyses of international survey data, argues that the relationship between national identification and prejudice toward immigrants is contingent on the extent to which ethnic or civic definitions of nationality are endorsed. The second, which uses European survey data, examines support for ascribed and acquired criteria that can be applied when determining who is permitted to migrate to one's country, and the various forms of national and individual threat that affect support for these criteria. We explain how the research benefits from a multilevel approach and also suggest how these findings relate to some current policy debates.
Resumo:
Background: Specific physical loading leads to enhanced bone development during childhood. A general physical activity program mimicking a real-life situation was successful at increasing general physical health in children. Yet, it is not clear whether it can equally increase bone mineral mass. We performed a cluster-randomized controlled trial in children of both gender and different pubertal stages to determine whether a school-based physical activity (PA) program during one school-year influences bone mineral content (BMC) and density (BMD), irrespective of gender.Methods: Twenty-eight 1st and 5th grade (6-7 and 11-12 year-old) classes were cluster randomized to an intervention (INT, 16 classes, n = 297) and control (CON; 12 classes, n = 205) group. The intervention consisted of a multi-component PA intervention including daily physical education with at least 10 min of jumping or strength training exercises of various intensities. Measurements included anthropometry, and BMC and BMD of total body, femoral neck, total hip and lumbar spine using dual-energy X-ray absorptiometry (DXA). PA was assessed by accelerometers and Tanner stages by questionnaires. Analyses were performed by a regression model adjusted for gender, baseline height and weight, baseline PA, post-intervention pubertal stage, baseline BMC, and cluster.Results: 275 (72%) of 380 children who initially agreed to have DXA measurements had also post-intervention DXA and PA data. Mean age of prepubertal and pubertal children at baseline was 8.7 +/- 2.1 and 11.1 +/- 0.6 years, respectively. Compared to CON, children in INT showed statistically significant increases in BMC of total body, femoral neck, and lumbar spine by 5.5%, 5.4% and 4.7% (all p < 0.05), respectively, and BMD of total body and lumbar spine by 8.4% and 7.3% (both p < 0.01), respectively. There was no gender*group, but a pubertal stage*group interaction consistently favoring prepubertal children.Conclusion: A general school-based PA intervention can increase bone health in elementary school children of both genders, particularly before puberty. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Materials/Methods: Four patients who underwent whole-brain radiotherapy (WBRT) and simultaneous integrated boost (SIB) between August 2010 and February 2011 were included to this study. Their age were 60, 61, 65, and 70 years. Primary diagnosis was infiltrative ductal breast cancer in two patients, sigmoid adenocarcinoma in one, and transitional bladder cancer in the other patient. All patients underwent cranial surgery but not all of the metastases were operated in 2 patients. All but one (five metastases) patient presented with single brain metastasis. In 2 of the 4 patients, hippocampus was spared contralaterally due to vicinity of the lesions to unilateral hippocampus. Planning irradiation dose was 30 Gy in 10 fractions for WBRT and 40 Gy in 10 fractions for SIB over two weeks in three patients. In one patient, WBRT and boost doses were 36Gy and 50.4 Gy in 18 fractions. Our maximum dose constraints for hippocampus and eyes were 10 and 20 Gy, respectively. All organs were contoured manually. Hippocampi were contoured according to published guidelines, and 5-mm margin expansion was used for hippocampal avoidance volume. All plans utilized a field width of 2.5 cm. Modulation factors ranged between 2 and 3.5. A pitch of 0,287 was used for all patients. All plans were evaluated according to conformity index (CI), homogeneity index (HI), target coverage (TC), and mean normalized total dose (NTDmean). An alpha/beta ratio of 2 was assumed for the hippocampus.Results: Median planning target volume (PTV) for metastases was 17.47 cc.Median hippocampal avoidance volume was 14.73 cc (range, 9.25-16.18 cc). Median average hippocampaldose was 11.84 Gy (range, 10.14-21.01 Gy). PTVs were fully covered with more than 95% of the prescribed dose for all patients. With a median follow-up time of 6 months (range, 3-9 months), all patients were alive without recurrent intracranial disease. To date, no neurocognitive decline reported in any of the patients.Conclusions: Preclinical evidence suggests that hippocampal sparing during cranial irradiation may mitigate neurocognitive decline. Using HT, we significantly reduced the mean dose to the hippocampus without jeopardizing coverage of metastases and whole brain.
Resumo:
How can we best understand the emergence of the European Security and Defence Policy (ESDP)? This paper applies the theories of historical institutionalism and experiential learning to offer a dynamic conceptualisation of moves towards an ESDP which highlights some of the causal factors that a more temporally-restricted analysis would miss. It firstly shows how the institutional and functional expansion of European Political Cooperation (EPC) over the course of the 1970s and 80s gave rise to a context in which the development of a security and defence dimension came to be viewed as more logical and even necessary. It then goes on to analyse some of the external factors (in the form of actors, events and institutions) that further pushed in this direction and proved to influence the policy’s subsequent evolution. The paper is therefore intended to act as a first-step to understanding the ESDP’s development from this perspective.
Resumo:
Recombinant strains of the oleaginous yeast Yarrowia lipolytica expressing the PHA synthase gene (PhaC) from Pseudomonas aeruginosa in the peroxisome were found able to produce polyhydroxyalkanoates (PHA). PHA production yield, but not the monomer composition, was dependent on POX genotype (POX genes encoding acyl-CoA oxidases) (Haddouche et al. FEMS Yeast Res 10:917-927, 2010). In this study of variants of the Y. lipolytica β-oxidation multifunctional enzyme, with deletions or inactivations of the R-3-hydroxyacyl-CoA dehydrogenase domain, we were able to produce hetero-polymers (functional MFE enzyme) or homo-polymers (with no 3-hydroxyacyl-CoA dehydrogenase activity) of PHA consisting principally of 3-hydroxyacid monomers (>80%) of the same length as the external fatty acid used for growth. The redirection of fatty acid flux towards β-oxidation, by deletion of the neutral lipid synthesis pathway (mutant strain Q4 devoid of the acyltransferases encoded by the LRO1, DGA1, DGA2 and ARE1 genes), in combination with variant expressing only the enoyl-CoA hydratase 2 domain, led to a significant increase in PHA levels, to 7.3% of cell dry weight. Finally, the presence of shorter monomers (up to 20% of the monomers) in a mutant strain lacking the peroxisomal 3-hydroxyacyl-CoA dehydrogenase domain provided evidence for the occurrence of partial mitochondrial β-oxidation in Y. lipolytica.
Resumo:
The physiological basis of human cerebral asymmetry for language remains mysterious. We have used simultaneous physiological and anatomical measurements to investigate the issue. Concentrating on neural oscillatory activity in speech-specific frequency bands and exploring interactions between gestural (motor) and auditory-evoked activity, we find, in the absence of language-related processing, that left auditory, somatosensory, articulatory motor, and inferior parietal cortices show specific, lateralized, speech-related physiological properties. With the addition of ecologically valid audiovisual stimulation, activity in auditory cortex synchronizes with left-dominant input from the motor cortex at frequencies corresponding to syllabic, but not phonemic, speech rhythms. Our results support theories of language lateralization that posit a major role for intrinsic, hardwired perceptuomotor processing in syllabic parsing and are compatible both with the evolutionary view that speech arose from a combination of syllable-sized vocalizations and meaningful hand gestures and with developmental observations suggesting phonemic analysis is a developmentally acquired process.
Resumo:
Aquest treball gira entorn la qüestió de l’ús que es fa de la literatura com a medi per a l’ensenyament de l’anglès com a segona llengua. En primer lloc, dibuixa el marc de la situació actual on hi ha una clara separació entre llengua i literatura com a assignatures diferenciades i fa un repàs de les diferents metodologies que al llarg de la historia han utilitzat la literatura com a eina d’aprenentatge de la llengua. Segonament, el treball explica el desenvolupament i posada en pràctica d’una unitat didàctica completa per a alumnes de segon de batxillerat, que te la literatura con a punt de sortida. El treball mira de concloure com la utilització de la literatura exerceix un poder de motivació clau en els alumnes i aporta un context que dona sentit i riquesa a l’ensenyament de la llengua. Per últim, el treball fa un recull de les opinions de professors d’anglès de Catalunya al respecte d’aquest tema, a través d’un qüestionari que 66 professors associats a l’APAC (Associació de Professors d’Anglès de Catalunya) van respondre de manera desinteressada.
Resumo:
Macroporosity is often used in the determination of soil compaction. Reduced macroporosity can lead to poor drainage, low root aeration and soil degradation. The aim of this study was to develop and test different models to estimate macro and microporosity efficiently, using multiple regression. Ten soils were selected within a large range of textures: sand (Sa) 0.07-0.84; silt 0.03-0.24; clay 0.13-0.78 kg kg-1 and subjected to three compaction levels (three bulk densities, BD). Two models with similar accuracy were selected, with a mean error of about 0.02 m³ m-3 (2 %). The model y = a + b.BD + c.Sa, named model 2, was selected for its simplicity to estimate Macro (Ma), Micro (Mi) or total porosity (TP): Ma = 0.693 - 0.465 BD + 0.212 Sa; Mi = 0.337 + 0.120 BD - 0.294 Sa; TP = 1.030 - 0.345 BD 0.082 Sa; porosity values were expressed in m³ m-3; BD in kg dm-3; and Sa in kg kg-1. The model was tested with 76 datum set of several other authors. An error of about 0.04 m³ m-3 (4 %) was observed. Simulations of variations in BD as a function of Sa are presented for Ma = 0 and Ma = 0.10 (10 %). The macroporosity equation was remodeled to obtain other compaction indexes: a) to simulate maximum bulk density (MBD) as a function of Sa (Equation 11), in agreement with literature data; b) to simulate relative bulk density (RBD) as a function of BD and Sa (Equation 13); c) another model to simulate RBD as a function of Ma and Sa (Equation 16), confirming the independence of this variable in relation to Sa for a fixed value of macroporosity and, also, proving the hypothesis of Hakansson & Lipiec that RBD = 0.87 corresponds approximately to 10 % macroporosity (Ma = 0.10 m³ m-3).
Resumo:
Evidence from magnetic resonance imaging (MRI) studies shows that healthy aging is associated with profound changes in cortical and subcortical brain structures. The reliable delineation of cortex and basal ganglia using automated computational anatomy methods based on T1-weighted images remains challenging, which results in controversies in the literature. In this study we use quantitative MRI (qMRI) to gain an insight into the microstructural mechanisms underlying tissue ageing and look for potential interactions between ageing and brain tissue properties to assess their impact on automated tissue classification. To this end we acquired maps of longitudinal relaxation rate R1, effective transverse relaxation rate R2* and magnetization transfer - MT, from healthy subjects (n=96, aged 21-88 years) using a well-established multi-parameter mapping qMRI protocol. Within the framework of voxel-based quantification we find higher grey matter volume in basal ganglia, cerebellar dentate and prefrontal cortex when tissue classification is based on MT maps compared with T1 maps. These discrepancies between grey matter volume estimates can be attributed to R2* - a surrogate marker of iron concentration, and further modulation by an interaction between R2* and age, both in cortical and subcortical areas. We interpret our findings as direct evidence for the impact of ageing-related brain tissue property changes on automated tissue classification of brain structures using SPM12. Computational anatomy studies of ageing and neurodegeneration should acknowledge these effects, particularly when inferring about underlying pathophysiology from regional cortex and basal ganglia volume changes.
Resumo:
Few studies in Brazil have addressed the need for micronutrients of physic nut focusing on physiological responses, especially in terms of photosynthesis. The objective of this study was to evaluate the effects of omission of boron (B), copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn) on Jatropha curcas L.. The experimental design was a randomized block with four replications. The treatments were complete solution (control) and solution without B, Cu, Fe, Mn, and Zn. We evaluated the chlorophyll content (SPAD units), photosynthetic rate, dry matter production and accumulation of micronutrients in plants, resulting from different treatments. The first signs of deficiency were observed for Fe and B, followed by Mn and Zn, while no symptoms were observed for Cu deficiency. The micronutrient omission reduced the dry matter yield, chlorophyll content and photosynthetic rate of the plants differently for each omitted nutrient. It was, however, the omission of Fe that most affected the development of this species in all parameters evaluated. The treatments negatively affected the chlorophyll content, evaluated in SPAD units, and the photosynthetic rate, except for the omission of B. However this result was probably due to the concentration effect, since there was a significant reduction in the dry matter production of B-deficient plants.