925 resultados para Energy Requirements
Resumo:
This project is funded by RTE, Paris, France
Resumo:
The energy demand for operating Information and Communication Technology (ICT) systems has been growing, implying in high operational costs and consequent increase of carbon emissions. Both in datacenters and telecom infrastructures, the networks represent a significant amount of energy spending. Given that, there is an increased demand for energy eficiency solutions, and several capabilities to save energy have been proposed. However, it is very dificult to orchestrate such energy eficiency capabilities, i.e., coordinate or combine them in the same network, ensuring a conflict-free operation and choosing the best one for a given scenario, ensuring that a capability not suited to the current bandwidth utilization will not be applied and lead to congestion or packet loss. Also, there is no way in the literature to do this taking business directives into account. In this regard, a method able to orchestrate diferent energy eficiency capabilities is proposed considering the possible combinations and conflicts among them, as well as the best option for a given bandwidth utilization and network characteristics. In the proposed method, the business policies specified in a high-level interface are refined down to the network level in order to bring highlevel directives into the operation, and a Utility Function is used to combine energy eficiency and performance requirements. A Decision Tree able to determine what to do in each scenario is deployed in a Software Defined Network environment. The proposed method was validated with diferent experiments, testing the Utility Function, checking the extra savings when combining several capabilities, the decision tree interpolation and dynamicity aspects. The orchestration proved to be valid to solve the problem of finding the best combination for a given scenario, achieving additional savings due to the combination, besides ensuring a conflict-free operation.
Resumo:
This BEER addresses informational barriers to energy efficiency. It is a widely acknowledged result that an energy efficiency gap exists implying that the level of energy efficiency is at an inefficiently low level. Several barriers to energy efficiency create this gap and the presence of asymmetric information is likely to be one such barrier. In this article a theoretical framework is presented addressing the issues of moral hazard and adverse selection related to energy efficiency. Based on the theoretical framework, European policies on energy efficiency are evaluated. The article is divided into two main parts. The first part presents the theory on information asymmetries and its consequences on energy efficiency focusing on the problems of moral hazard and adverse selection. Having established a theoretical framework to understand the agency barriers to energy efficiency, the second part evaluates the policies of the European Union on energy efficiency. The BEER finds that problems of moral hazard and adverse selection indeed can help explain the seemingly low levels of energy. In both presented models the cost to the principal from implementing high energy efficiency outcome is increased with the informational asymmetries. The theory reveals two implications to policies on energy efficiency. First, the development of measures to enable contractual parties to base remuneration on energy performance must be enhanced, and second, the information on technologies and the education of consumers and installers on energy efficiency must be increased. This could be complemented with certification of installers and energy efficiency advisors to enable consumers to select good agents. Finally, it is found that the preferred EU policy instrument on energy efficiency, so far, seems to be the use of minimum requirements. Less used in EU legislation is the use of measuring and verification as well as the use of certifications. Therefore, it is concluded that the EU should consider an increased use of these instruments, and in particular focus on a further development of standards on measurability and verification as well as an increased focus on education of consumers as well as installers and advisors on energy efficiency.
Resumo:
AEC Contract AT(04-3)-400.
Resumo:
"Prepared for the Division of Isotopes Development, United States Atomic Energy Commission."--Cover.
Resumo:
Based upon a dissertation by R. I. Van Hook to the Graduate Council of Clemson University in partial fulfillment of the requirements for the degree of Doctor of Philosophy.
Resumo:
Mode of access: Internet.
Resumo:
On spine: Task Force report - water resources.
Resumo:
"Prepared for Office of Nuclear Power Systems, Assistant Secretary for Nuclear Energy, U.S. Department of Energy and the Institute of Nuclear Power Operations."
Resumo:
"September 1996."
Resumo:
Includes index.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Achievement of steady state during indirect calorimetry measurements of resting energy expenditure (REE) is necessary to reduce error and ensure accuracy in the measurement. Steady state is often defined as 5 consecutive min (5-min SS) during which oxygen consumption and carbon dioxide production vary by +/-10%. These criteria, however, are stringent and often difficult to satisfy. This study aimed to assess whether reducing the time period for steady state (4-min SS or 3-min SS) produced measurements of REE that were significantly different from 5-min SS. REE was measured with the use of open-circuit indirect calorimetry in 39 subjects, of whom only 21 (54%) met the 5-min SS criteria. In these 21 subjects, median biases in REE between 5-min SS and 4-min SS and between 5-min SS and 3-min SS were 0.1 and 0.01%, respectively. For individuals, 4-min SS measured REE within a clinically acceptable range of +/-2% of 5-min SS, whereas 3-min SS measured REE within a range of -2-3% of 5-min SS. Harris-Benedict prediction equations estimated REE for individuals within +/-20-30% of 5-min SS. Reducing the time period of steady state to 4 min produced measurements of REE for individuals that were within clinically acceptable, predetermined limits. The limits of agreement for 3-min SS fell outside the predefined limits of +/-2%; however, both 4-min SS and 3-min SS criteria greatly increased the proportion of subjects who satisfied steady state within smaller limits than would be achieved if relying on prediction equations.