983 resultados para Embryonic Gonad
A transgene coding for a human insulin analog has a mitogenic effect on murine embryonic beta cells.
Resumo:
We have investigated the mitogenic effect of three mutant forms of human insulin on insulin-producing beta cells of the developing pancreas. We examined transgenic embryonic and adult mice expressing (i) human [AspB10]-proinsulin/insulin ([AspB10]ProIN/IN), produced by replacement of histidine by aspartic acid at position 10 of the B chain and characterized by an increased affinity for the insulin receptor; (ii) human [LeuA3]insulin, produced by the substitution of leucine for valine in position 3 of the A chain, which exhibits decreased receptor binding affinity; and (iii) human [LeuA3, AspB10]insulin "double" mutation. During development, beta cells of AspB10 embryos were twice as abundant and had a 3 times higher rate of proliferation compared with beta cells of littermate controls. The mitogenic effect of [AspB10]ProIN/IN was specific for embryonic beta cells because the rate of proliferation of beta cells of adults and of glucagon (alpha) cells and adrenal chromaffin cells of embryos was similar in AspB10 mice and controls. In contrast to AspB10 embryos, the number of beta cells in the LeuA3 and "double" mutant lines was similar to the number in controls. These findings indicate that the [AspB10]ProIN/IN analog increased the rate of fetal beta-cell proliferation. The mechanism or mechanisms that mediate this mitogenic effect remain to be determined.
Resumo:
Previous studies have implicated the bcl-2 protooncogene as a potential regulator of neuronal survival. However, mice lacking functional bcl-2 exhibited normal development and maintenance of the central nervous system (CNS). Since bcl-2 appears dispensable for neuronal survival, we have examined the expression and function of bcl-x, another member of the bcl-2 family of death regulatory genes. Bcl-2 is expressed in neuronal tissues during embryonic development but is down-regulated in the adult CNS. In contrast, Bcl-xL expression is retained in neurons of the adult CNS. Two different forms of bcl-x mRNA and their corresponding products, Bcl-xL and Bcl-x beta, were expressed in embryonic and adult neurons of the CNS. Microinjection of bcl-xL and bcl-x beta cDNAs into primary sympathetic neurons inhibited their death induced by nerve growth factor withdrawal. Thus, Bcl-x proteins appear to play an important role in the regulation of neuronal survival in the adult CNS.
Resumo:
We have identified a murine gene, metaxin, that spans the 6-kb interval separating the glucocerebrosidase gene (GC) from the thrombospondin 3 gene on chromosome 3E3-F1. Metaxin and GC are transcribed convergently; their major polyadenylylation sites are only 431 bp apart. On the other hand, metaxin and the thrombospondin 3 gene are transcribed divergently and share a common promoter sequence. The cDNA for metaxin encodes a 317-aa protein, without either a signal sequence or consensus for N-linked glycosylation. Metaxin protein is expressed ubiquitously in tissues of the young adult mouse, but no close homologues have been found in the DNA or protein data bases. A targeted mutation (A-->G in exon 9) was introduced into GC by homologous recombination in embryonic stem cells to establish a mouse model for a mild form of Gaucher disease. A phosphoglycerate kinase-neomycin gene cassette was also inserted into the 3'-flanking region of GC as a selectable marker, at a site later identified as the terminal exon of metaxin. Mice homozygous for the combined mutations die early in gestation. Since the same amino acid mutation in humans is associated with mild type 1 Gaucher disease, we suggest that metaxin protein is likely to be essential for embryonic development in mice. Clearly, the contiguous gene organization at this locus limits targeting strategies for the production of murine models of Gaucher disease.
Resumo:
Voltage- and ligand-activated channels in embryonic neurons containing luteinizing hormone-releasing hormone (LHRH) were studied by patch-pipette, whole-cell current and voltage clamp techniques. LHRH neurons were maintained in explant cultures derived from olfactory pit regions of embryonic mice. Cells were marked intracellularly with Lucifer yellow following recording. Sixty-two cells were unequivocally identified as LHRH neurons by Lucifer yellow and LHRH immunocytochemistry. The cultured LHRH neurons had resting potentials around -50 mV, exhibited spontaneous discharges generated by intrinsic and/or synaptic activities and contained a time-dependent inward rectifier (Iir). Voltage clamp analysis of ionic currents in the LHRH neuron soma revealed a tetrodotoxin-sensitive Na+ current (INa) and two major types of K+ currents, a transient current (IA), a delayed rectifier current (IK) and low- and high-voltage-activated Ca2+ currents. Spontaneous depolarizing synaptic potentials and depolarizations induced by direct application of gamma-aminobutyrate were both inhibited by picrotoxin or bicuculline, demonstrating the presence of functional gamma-aminobutyrate type A synapses on these neurons. Responses to glutamate were found in LHRH neurons in older cultures. Thus, embryonic LHRH neurons not yet positioned in their postnatal environment in the forebrain contained a highly differentiated repertoire of voltage- and ligand-gated channels.
Resumo:
Injecting male embryonic stem cells into the blastocoel of female embryos occasionally produces female chimeras capable of transmitting the embryonic stem cell genome. In our experiments several embryonic stem cell-derived male offspring from female chimeras were observed to be infertile. Karyotypic analysis of these infertile animals revealed aneuploidy. We examined the karyotypes of an additional 14 offspring not selected for infertility (3 females and 11 males) that had received the embryonic stem cell genome from 5 transmitting female chimeras. The 3 females and 5 of the males had normal karyotypes. Six of the males exhibited nonmosaic aneuploidy, which included four XXY karyotypes, one XYY karyotype, and an X,i(Y) karyotype. The high incidence of XXY and XYY males supports previous evidence for aberrant pairing and segregation of X and Y chromosomes when they are present in oocytes.
Resumo:
Müller cells are the main glial cells in the retina, and are related to plexiform layer activity. Recent studies have demonstrated that Müller cells are involved in the synaptic conservation, plasticity, development and metabolism of glutamate. During turtle retinal development, layers, cells and synapses appear at different times. The aim of this research is to study the emergence of Müller cells during embryonic development and their relationship with the synaptogenesis. The authors used retinas from Trachemys scripta elegans embryos at stages S14, 18, 20, 23, and 26. Some retinas were processed with immunocytochemistry in order to detect the presence of glutamine synthetase in Müller cells, which was used as a marker of these cells. Other retinas from the same stages were processed for ultrastructural studies. Samples were observed in confocal and transmission electron microscopes, respectively. The present results show that glutamine synthetase expression in Müller cells occurs at S18, before the emergence of the retinal layers and the early synapses.
Resumo:
Afin d’effectuer des études fonctionnelles sur le génome de la souris, notre laboratoire a généré une bibliothèque de clones de cellules souches embryonnaires (ESC) présentant des suppressions chromosomiques chevauchantes aléatoires – la bibliothèque DELES. Cette bibliothèque contient des délétions couvrant environ 25% du génome murin. Dans le laboratoire, nous comptons identifier de nouveaux déterminants du destin des cellules hématopoïétiques en utilisant cet outil. Un crible primaire utilisant la benzidine pour démontrer la présence d'hémoglobine dans des corps embryoïdes (EBS) a permis d’identifier plusieurs clones délétés présentant un phénotype hématopoïétique anormal. Comme cet essai ne vérifie que la présence d'hémoglobine, le but de mon projet est d'établir un essai in vitro de différenciation des ESC permettant de mesurer le potentiel hématopoïétique de clones DELES. Mon hypothèse est que l’essai de différenciation hématopoïétique publié par le Dr Keller peut être importé dans notre laboratoire et utilisé pour étudier l'engagement hématopoïétique des clones DELES. À l’aide d’essais de RT-QPCR et de FACS, j’ai pu contrôler la cinétique de différenciation hématopoïétique en suivant l’expression des gènes hématopoïétiques et des marqueurs de surface comme CD41, c-kit, RUNX1, GATA2, CD45, β-globine 1 et TER-119. Cet essai sera utilisé pour valider le potentiel hématopoïétique des clones DELES candidats identifiés dans le crible principal. Mon projet secondaire vise à utiliser la même stratégie rétro-virale a base de Cre-loxP utilisée pour générer la bibliothèque DELES pour générer une bibliothèque de cellules KBM-7 contenant des suppressions chromosomiques chevauchantes. Mon but ici est de tester si la lignée cellulaire leuémique humaine presque haploïde KBM-7 peut être exploitée en utilisant l'approche DELES pour créer cette bibliothèque. La bibliothèque de clones KBM-7 servira à définir les activités moléculaires de drogues anti-leucémiques potentielless que nous avons identifiées dans le laboratoire parce qu’elles inhibent la croissance cellulaire dans plusieurs échantillons de leucémie myéloïde aiguë dérivés de patients. Elle me permettra également d'identifier les voies de signalisation moléculaires qui, lorsque génétiquement perturbées, peuvent conférer une résistance à ces drogues.
Resumo:
Issued Apr. 1977.
Resumo:
Bibliography: p. 29-30.
Resumo:
Issued June 1976.
Resumo:
Indirect evidence indicates that morphine-3-glucuronide (M3G) may contribute significantly to the neuro-excitatory side effects (myoclonus and allodynia) of large-dose systemic morphine. To gain insight into the mechanism underlying M3G' s excitatory behaviors, We used fluo-3 fluorescence digital imaging techniques to assess the acute effects of M3G (5-500 muM) on the cytosolic calcium concentration ([Ca2+](CYT)) in cultured embryonic hippocampal neurones. Acute (3 min) exposure of neurones to M3G evoked [Ca2+](CYT) transients that were typically either (a) transient oscillatory responses characterized by a rapid increase in [Ca2+](CYT) oscillation amplitude that was sustained for at least similar to30 s or (b) a sustained increase in [Ca2+](CYT) that slowly recovered to baseline. Naloxone-pretreatment decreased the proportion of M3G-responsive neurones by 10%-25%, implicating a predominantly non-opioidergic mechanism. Although the naloxone-insensitive M3G-induced increases in [Ca2+](CYT) were completely blocked by N-methyl-D-aspartic acid (NMDA) antagonists and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (alphaamino-3-hydroxy-5-methyl-4-isoxazolepropiordc acid/ kainate antagonist), CNQX did not block the large increase in [Ca2+](CYT) evoked by NMDA (as expected), confirming that N13G indirectly activates the NMDA receptor. Additionally, tetrodotoxin (Na+ channel blocker), baclofen (gamma-aminobutyric acid, agonist), MVIIC (P/Q-type calcium channel blocker), and nifedipine (L-type calcium channel blocker) all abolished M3G-induced increases in [Ca2+](CYT), suggesting that M3G may produce its neuro-excitatory effects by modulating neurotransmitter release. However, additional characterization is required.
Resumo:
The embryonic period of motoneuron programmed cell death (PCD) is marked by transient motor axon branching, but the role of neuromuscular synapses in regulating motoneuron number and axonal branching is not known. Here, we test whether neuromuscular synapses are required for the quantitative association between reduced skeletal muscle contraction, increased motor neurite branching, and increased motoneuron survival. We achieved this by comparing agrin and rapsyn mutant mice that lack acetylcholine receptor (AChR) clusters. There were significant reductions in nerve-evoked skeletal muscle contraction, increases in intramuscular axonal branching, and increases in spinal motoneuron survival in agrin and rapsyn mutant mice compared with their wild-type littermates at embryonic day 18.5 (E18.5). The maximum nerve-evoked skeletal muscle contraction was reduced a further 17% in agrin mutants than in rapsyn mutants. This correlated to an increase in motor axon branch extension and number that was 38% more in agrin mutants than in rapsyn mutants. This suggests that specializations of the neuromuscular synapse that ensure efficient synaptic transmission and muscle contraction are also vital mediators of motor axon branching. However, these increases in motor axon branching did not correlate with increases in motoneuron survival when comparing agrin and rapsyn mutants. Thus, agrin-induced synaptic specializations are required for skeletal muscle to effectively control motoneuron numbers during embryonic development. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
This article investigates the expression patterns of 160 genes that are expressed during early mouse development. The cDNAs were isolated from 7.5 d postcoitum (dpc) encloderm, a region that comprises visceral encloderm (VE), definitive encloderm, and the node-tissues that are required for the initial steps of axial specification and tissue patterning in the mouse. To avoid examining the same gene more than once, and to exclude potentially ubiquitously expressed housekeeping genes, cDNA sequence was derived from 1978 clones of the Endoderm library. These yielded 1440 distinct cDNAs, of which 123 proved to be novel in the mouse. In situ hybridization analysis was carried out on 160 of the cDNAs, and of these, 29 (18%) proved to have restricted expression patterns.
Resumo:
The Sonic Hedgehog (Shh) signalling pathway plays a central role in the development of the skin and hair follicle and is a major determinant of skin tumorigenesis, most notably of basal cell carcinoma (BCC). Various mouse models involving either ablation or overexpression of key members of the Shh signalling pathway display a range of skin tumours. To further examine the role of Shh in skin development. we have overexpressed Shh in a subset of interfollicular basal cells from 12.5 dpc under the control of the human keratin 1 (HK1) promoter. The HK1-Shh transgenic mice display a range of skin anomalies, including highly pigmented inguinal lesions and regions of alopecia. The most striking hair follicle phenotype is a suppression in embryonic follicle development between 14.0 and 19.0 dpc, resulting in a complete absence of guard, awl, and auchene hair fibres. These data indicate that alternative signals are responsible for the development of different hair follicles and point to a major role of Shh signalling in the morphogenesis of guard, awl, and auchene hair fibres. Through a comparison with other mouse models, the characteristics of the HK1-Shh transgenic mice suggest that the precise timing and site of Shh expression are key in dictating the resultant skin and tumour phenotype. 2003 Elsevier Inc. All rights reserved.