983 resultados para Embryo-sac Development
Resumo:
In the amniotes, two unique layers of cells, the epiblast and the hypoblast, constitute the embryo at the blastula stage. All the tissues of the adult will derive from the epiblast, whereas hypoblast cells will form extraembryonic yolk sac endoderm. During gastrulation, the endoderm and the mesoderm of the embryo arise from the primitive streak, which is an epiblast structure through which cells enter the interior. Previous investigations by others have led to the conclusion that the avian hypoblast, when rotated with regard to the epiblast, has inductive properties that can change the fate of competent cells in the epiblast to form an ectopic embryonic axis. Thus, it has been suggested that the hypoblast normally induces the epiblast to form a primitive streak at a specific locus. In the work reported here, an attempt was made to reexamine the issue of induction. In contrast to previous reports, it was found that the rotated hypoblast of the chicken embryo does not initiate formation of an ectopic axis in the epiblast. The embryonic axis always initiates and develops according to the basic polarity of the epiblast layer. These results provoke a reinterpretation of the issues of mesoderm induction and primitive streak initiation in the avian embryo.
Resumo:
Using a reverse transcription-coupled PCR, we demonstrated that both brain and spleen type cannabinoid receptor (CB1-R and CB2-R, respectively) mRNAs are expressed in the preimplantation mouse embryo. The CB1-R mRNA expression was coincident with the activation of the embryonic genome late in the two-cell stage, whereas the CB2-R mRNA was present from the one-cell through the blastocyst stages. The major psychoactive component of marijuana (-)-delta-9-tetrahydrocannabinol [(-)-THC] inhibited forskolin-stimulated cAMP generation in the blastocyst, and this inhibition was prevented by pertussis toxin. However, the inactive cannabinoid cannabidiol (CBD) failed to influence this response. These results suggest that cannabinoid receptors in the embryo are coupled to inhibitory guanine nucleotide binding proteins. Further, the oviduct and uterus exhibited the enzymatic capacity to synthesize the putative endogenous cannabinoid ligand arachidonylethanolamide (anandamide). Synthetic and natural cannabinoid agonists [WIN 55,212-2, CP 55,940, (-)-THC, and anandamide], but not CBD or arachidonic acid, arrested the development of two-cell embryos primarily between the four-cell and eight-cell stages in vitro in a dose-dependent manner. Anandamide also interfered with the development of eight-cell embryos to blastocysts in culture. The autoradiographic studies readily detected binding of [3H]anandamide in embryos at all stages of development. Positive signals were present in one-cell embryos and all blastomeres of two-cell through four-cell embryos. However, most of the binding sites in eight-cell embryos and morulae were present in the outer cells. In the blastocyst, these signals were primarily localized in the mural trophectoderm with low levels of signals in the polar trophectoderm, while little or no signals were noted in inner cell mass cells.These results establish that the preimplantation mouse embryo is a target for cannabinoid ligands. Consequently, many of the adverse effects of cannabinoids observed during pregnancy could be mediated via these cannabinoid receptors. Although the physiological significance of the cannabinoid ligand-receptor signaling in normal preimplantation embryo development is not yet clear, the regulation of embryonic cAMP and/or Ca2+ levels via this signaling pathway may be important for normal embryonic development and/or implantation.
Resumo:
The homologous LAG-2 and APX-1 membrane proteins are putative signaling ligands in the GLP-1/LIN-12 signal-transduction pathway in Caenorhabditis elegans. Normally, LAG-2 and APX-1 mediate distinct cell interactions. Here, we demonstrate that APX-1, which normally interacts with GLP-1 in the early embryo, can substitute for LAG-2 throughout development. When expressed under control of the lag-2 promoter, an apx-1 cDNA can completely rescue a lag-2 null mutant. To substitute for LAG-2, APX-1 must be able to interact with both GLP-1 and LIN-12 receptors and to mediate a variety of cell interactions during development. Therefore, APX-1 and LAG-2 are essentially equivalent in their ability to influence receptor activity. On the basis of this result, we suggest that the existence of multiple-signaling ligands in the LIN-12/GLP-1 signal transduction pathway does not reflect the evolution of functionally distinct proteins but rather the imposition of distinct controls of gene expression upon functionally similar proteins. Finally, we propose that the specification of distinct cell fates by the LIN-12/GLP-1 signal-transduction pathway relies on activities functioning downstream of the ligand and receptor, rather than on specific ligand-receptor interactions.
Resumo:
In the sea urchin embryo, the lineage founder cells whose polyclonal progenies will give rise to five different territories are segregated at the sixth division. To investigate the mechanisms by which the fates of embryonic cells are first established, we looked for temporal and spatial expression of homeobox genes in the very early cleavage embryos. We report evidence that PlHbox12, a paired homeobox-containing gene, is expressed in the embryo from the 4-cell stage. The abundance of the transcripts reaches its maximum when the embryo has been divided into the five polyclonal territories--namely at the 64-cell stage--and it abruptly declines at later stages of development. Blastomere dissociation experiments indicate that maximal expression of PlHbox12 is dependent on intercellular interactions, thus suggesting that signal transduction mechanisms are responsible for its transcriptional activation in the early cleavage embryo. Spatial expression of PlHbox12 was determined by whole-mount in situ hybridization. PlHbox12 transcripts in embryos at the fourth, fifth, and sixth divisions seem to be restricted to the conditionally specified ectodermal lineages. These results suggest a possible role of the PlHbox12 gene in the early events of cell specification of the presumptive ectodermal territories.
Resumo:
Programmed cell death (apoptosis) is an intrinsic part of organismal development and aging. Here we report that many nonsteroidal antiinflammatory drugs (NSAIDs) cause apoptosis when applied to v-src-transformed chicken embryo fibroblasts (CEFs). Cell death was characterized by morphological changes, the induction of tissue transglutaminase, and autodigestion of DNA. Dexamethasone, a repressor of cyclooxygenase (COX) 2, neither induced apoptosis nor altered the NSAID effect. Prostaglandin E2, the primary eicosanoid made by CEFs, also failed to inhibit apoptosis. Expression of the protooncogene bcl-2 is very low in CEFs and is not altered by NSAID treatment. In contrast, p20, a protein that may protect against apoptosis when fibroblasts enter G0 phase, was strongly repressed. The NSAID concentrations used here transiently inhibit COXs. Nevertheless, COX-1 and COX-2 mRNAs and COX-2 protein were induced. In some cell types, then, chronic NSAID treatment may lead to increased, rather than decreased, COX activity and, thus, exacerbate prostaglandin-mediated inflammatory effects. The COX-2 transcript is a partially spliced and nonfunctional form previously described. Thus, these findings suggest that COXs and their products play key roles in preventing apoptosis in CEFs and perhaps other cell types.
Resumo:
The ontogenic development of the sphincter iris has been studied by immunocytochemistry and standard staining on chick embryos from stage 25 HH to the time of hatching. We have used the monoclonal antibody 13F4, a highly specific marker of muscular cells. We have observed three different regions in the iris. Tn the pupillary region, immunoreactive cells are in continuous contact with the inner epithelium of the pupillary margin. In the intermediate region, the outer epithelium forms buds of pigmented cells that emigrate toward the stroma. In this epithelium cells that are totally or partially unpigmented exist, and they are 13F4 positive. In the sphincter we have observed 13F4 positive cells with melanin granules. In the ciliary region, the immunoreactivity appears in dispersed mesenchymal cells. The present findings are consistent with a triple origin of the sphincter iris in the chick embryo. This muscle is derived from the inner epithelium of the pupillary margin, the intermediate region of the outer epithelium, and from the mesenchymal cells. The cells of the inner epithelium of the pupillary margin are differentiated into smooth muscle cells, and the remaining cells form striated muscle cells.
Resumo:
Formation of the vertebrate axial skeleton requires coordinated Hox gene activity. Hox group 6 genes are involved in the formation of the thoracic area owing to their unique rib-promoting properties. Here we show that the linker region (LR) connecting the homeodomain and the hexapeptide is essential for Hoxb6 rib-promoting activity in mice. The LR-defective Hoxb6 protein was still able to bind a target enhancer together with Pax3, producing a dominant-negative effect, indicating that the LR brings additional regulatory factors to target DNA elements. We also found an unexpected association between Hoxb6 and segmentation in the paraxial mesoderm. In particular, Hoxb6 can disturb somitogenesis and anterior-posterior somite patterning by dysregulation of Lfng expression. Interestingly, this interaction occurred differently in thoracic versus more caudal embryonic areas, indicating functional differences in somitogenesis before and after the trunk-to-tail transition. Our results suggest the requirement of precisely regulated Hoxb6 expression for proper segmentation at tailbud stages.
Resumo:
New vessel formation, a highly-regulated, active process commencing in the embryo and evident notably during the pubertal growth spurt, is essential for normal prostate development. Reactivation of this process in response to physiological stimuli, particularly hypoxia in mature tissues, occurs with new vessels forming principally from stromal components. Although angiogenesis is complex, putatively involving a multitude of angiogenic factors and inhibitors, there is powerful evidence of the importance of the VEGF system in the development of both the normal prostate and prostate cancer. Recent advances include an understanding of how castration acts through the VEGF system to inhibit angiogenesis. Stromal-endothelial and epithelial-endothelial interactions are just beginning to be investigated. A better understanding of how physiological angiogenesis is controlled should help to provide further insights into the mechanism of disregulated angiogenesis in tumours. Ultimately, new antiangiogenic agents are likely to find a role in the management of patients with prostate cancer.
Resumo:
Insulin-like growth factor II (IGF-II) and its receptor, the IGF-II/mannose-6-phosphate (IGF-II/M6P) receptor, are first expressed from the zygotic genome at the two-cell stage of mouse development. However, their role is not clearly defined. Insulin-like growth factor II is believed to mediate growth through the heterologous type 1 IGF and insulin receptors, whereas the IGF-II/M6P receptor is believed to act as a negative regulator of somatic growth by limiting the availability of excess levels of IGF-II. These studies demonstrate that IGF-II does have a role in growth regulation in the early embryo through the IGF-II/M6P receptor. Insulin-like growth factor II stimulated cleavage rate in two-cell embryos in vitro. Moreover, this receptor is required for the glycaemic response of two-cell embryos to IGF-II and for normal progression of early embryos to the blastocyst stage. Improved development of embryos in crowded culture supports the concept of an endogenous embryonic paracrine activity that enhances cell proliferation. These responses indicate that the IGF-II/M6P receptor is functional and likely to participate in such a regulatory circuit. The functional role of IGF-II and its receptor is discussed with reference to regulation of early development.
Resumo:
Germ cells in the mouse embryo remain undifferentiated until about 13.5 days post-coitum (dpc), when male germ cells enter mitotic arrest and female germ cells enter meiosis. The molecular signals and transcriptional control mechanisms governing the differential fate of germ cells in males and females remain largely unknown. In order to gain insights into the behavior of germ cells around this period and into likely mechanisms controlling entry into meiosis, we have studied by wholemount in situ hybridization the expression pattern of two germ cell-specific markers, Oct4 and Sycp3, during mouse fetal gonad development. We observed a dynamic wave of expression of both genes in developing ovaries, with Oct4 expression being extinguished in a rostro-caudal wave and Sycp3 being upregulated in a corresponding wave, during the period 13.5-15.5 dpc. These results indicate that entry into meiosis proceeds in a rostro-caudal progression, in turn suggesting that somatically derived signals may contribute to the control of germ cell entry into meiosis in developing ovaries. (C) 2004 Wiley-Liss, Inc.
Resumo:
Cell deletion is a physiological process for the development and maintenance of tissue homeostasis in metazoa. This is mainly achieved by the induction of various forms of programmed cell death followed by the recognition and removal of the targeted cells by phagocytes. In this review, we will discuss cell deletion in relation to the development and function of the innate immune system, particularly of the mononuclear phagocyte system (MPS), its ontogeny and potential role in tissue remodeling in the embryo and adult. Ongoing studies are addressing the roles of professional phagocytes of the MPS and neighboring tissue cells in dying cell removal, and candidate molecules that might attract mononuclear phagocytes to the dying cells. The potential phagocyte must discriminate between living and dying cells; current concepts for this discrimination derive from the observation of newly exposed ligands on the dying cells and new evidence for direct inhibition of uptake by viable cells.
Resumo:
Cleavage-stage embryos have an absolute requirement for pyruvate and lactate, but as the morula compacts, it switches to glucose as the preferred energy source to fuel glycolysis. Substrates such as glucose, amino acids, and lactate are moved into and out of cells by facilitated diffusion. in the case of lactate and pyruvate, this occurs via H+-monocarboxylate cotransporter (MCT) proteins. To clarify the role of MCT in development, transport characteristics for DL-lactate were examined, as were mRNA expression and protein localisation for MCT1 and MCT3, using confocal laser scanning immunofluorescence in freshly collected and cultured embryos. Blastocysts demonstrated significantly higher affinity for DL-lactate than zygotes (K-m 20 +/- 10 vs 87 +/- 35 mmol lactate/l; P = 0.03 by linear regression) but was similar for all stages. For embryos derived in vivo and those cultured with glucose, MCT1 mRNA was present throughout preimplantation development, protein immunoreactivity appearing diffuse throughout the cytoplasm with brightest intensity in the outer cortical region of blastomeres. in expanding blastocysts, MCT1 became more prominent in the cytoplasmic cortex of blastomeres, with brightest intensity in the polar trophectoderm. Without glucose, MCT1 mRNA was not expressed, and immunoreactivity dramatically reduced in intensity as morulae died. MCT3 mRNA and immunoreactivity were not detected in early embryos. The differential expression of MCT1 in the presence or absence of glucose demonstrates that it is important in the critical regulation of pH and monocarboxylate transport during preimplantation development, and implies a role for glucose in the control of MCT1, but not MCT3, expression.
Resumo:
The Crim1 gene encodes a transmembrane protein containing six cysteine-rich repeats similar to those found in the BMP antagonist, chordin (chd). To investigate its physiological role, zebrafish crim1 was cloned and shown to be both maternally and zygotically expressed during zebrafish development in sites including the vasculature, intermediate cell mass. notochord, and otic vesicle. Bent or hooked tails with U-shaped somites were observed in 85% of morphants from 12 hpf. This was accompanied by a loss of muscle pioneer cells. While morpholino knockdown of crim1 showed some evidence of ventralisation, including expansion of the intermediate cell mass (ICM), reduction in head size bent tails and disruption to the somites and notochord, this did not mimic the classically ventralised phenotype, as assessed by the pattern of expression of the dorsal markers chordin, otx2 and the ventral markers eve1, pax2.1, tall and gata1 between 75% epiboly and six-somites. From 24 hpf, morphants displayed an expansion of the ventral mesoderm-derived ICM, as evidenced by expansion of tall. Imo2 and crim1 itself. Analysis of the crim1 morphant phenotype in Tg(fli:EGFP) fish showed a clear reduction in the endothelial cells forming the intersegmental vessels and a loss of the dorsal longitudinal anastomotic vessel (DLAV). Hence, the primary role of zebrafish crim1 is likely to be the regulation of somitic and vascular development. (c) 2006 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The Hedgehog family of secreted morphogens specifies the fate of a large number of different cell types within invertebrate and vertebrate embryos, including the muscle cell precursors of the embryonic myotome of zebrafish. Formation of Hedgehog-sensitive muscle fates is disrupted within homozygous zebrafish mutants of the you-type class, the majority of which disrupt components of the Hedgehog (HH) signal transduction pathway. We have undertaken a phenotypic and molecular characterisation of one of these mutants, you, which we show results from mutations within the zebrafish orthologue of the mammalian, gene scube2. This gene encodes a member of the Scube family of proteins, which is characterised by several protein motifs including EGF and CUB domains. Epistatic and molecular analyses position Scube2 function upstream of Smoothened (Smoh), the signalling component of the HH receptor complex, suggesting that Scube2 may act during HH signal transduction prior to, or during, receipt of the HH signal at the plasma membrane. In support of this model we show that scube2 has homology to cubilin, which encodes an endocytic receptor involved in protein trafficking suggesting a possible mode of function for Scube2 during HH signal transduction. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
As the mammalian embryo develops, it must engage one of the two distinct programmes of gene activity, morphogenesis and organogenesis that characterize males and females. In males, sexual development hinges on testis determination and differentiation, but also involves many coordinated transcriptional, signalling and endocrine networks that underpin the masculinization of other organs and tissues, including the brain. Here we bring together current knowledge about these networks, identify gaps in the overall picture, and highlight the known defects that lead to disorders of male sexual development.