963 resultados para Electrostatic precipitation
Resumo:
The propagation of ion acoustic shocks in nonthermal plasmas is investigated, both analytically and numerically. An unmagnetized collisionless electron-ion plasma is considered, featuring a superthermal (non-Maxwellian) electron distribution, which is modeled by a ?-(kappa) distribution function. Adopting a multiscale approach, it is shown that the dynamics of low-amplitude shocks is modeled by a hybrid Korteweg-de Vries-Burgers (KdVB) equation, in which the nonlinear and dispersion coefficients are functions of the ? parameter, while the dissipative coefficient is a linear function of the ion viscosity. All relevant shock parameters are shown to depend on ?: higher deviations from a pure Maxwellian behavior induce shocks which are narrower, faster, and of larger amplitude. The stability profile of the kink-shaped solutions of the KdVB equation against external perturbations is investigated. The spatial profile of the shocks is found to depend upon the dispersion and the dissipation term, and the role of the interplay between dispersion and dissipation is elucidated.
Resumo:
The propagation of electron-acoustic solitary waves and shock structures is investigated in a plasma characterized by a superthermal electron population. A three-component plasma model configuration is employed, consisting of inertial (“cold”) electrons, inertialess ? (kappa) distributed superthermal (“hot”) electrons and stationary ions. A multiscale method is employed, leading to a Korteweg-de Vries (KdV) equation for the electrostatic potential (in the absence of dissipation). Taking into account dissipation, a hybrid Korteweg-de Vries-Burgers (KdVB) equation is derived. Exact negative-potential pulse- and kink-shaped solutions (shocks) are obtained. The relative strength among dispersion, nonlinearity and damping coefficients is discussed. Excitations formed in superthermal plasma (finite ?) are narrower and steeper, compared to the Maxwellian case (infinite ?). A series of numerical simulations confirms that energy initially stored in a solitary pulse which propagates in a stable manner for large ? (Maxwellian plasma) may break down to smaller structures or/and to random oscillations, when it encounters a small-? (nonthermal) region. On the other hand, shock structures used as initial conditions for numerical simulations were shown to be robust, essentially responding to changed in the environment by a simple profile change (in width).