957 resultados para Electron spin resonance spectroscopy
Resumo:
The basis for the neuroprotectant effect of D-mannitol in reducing the sensory neurological disturbances seen in ciguatera poisoning, is unclear. Pacific ciguatoxin-1 (P-CTX-1), at a concentration 10 nM, caused a statistically significant swelling of rat sensory dorsal root ganglia (DRG) neurons that was reversed by hyperosmolar 50 MM D-mannitol. However, using electron paramagnetic resonance (EPR) spectroscopy, it was found that P-CTX-1 failed to generate hydroxyl free radicals at concentrations of toxin that caused profound effects on neuronal excitability. Whole-cell patch-clamp recordings from DRG neurons revealed that both hyper- and iso-osmolar 50 MM D-mannitol prevented the membrane depolarisation and repetitive firing of action potentials induced by P-CTX-1. In addition, both hyper- and iso-osmolar 50 MM D-mannitol prevented the hyperpolarising shift in steady-state inactivation and the rise in leakage current through tetrodotoxin (TTX)-sensitive Na-v channels, as well as the increased rate of recovery from inactivation of TTX-resistant Nav channels induced by P-CTX-1. D-Mannitol also reduced, but did not prevent, the inhibition of peak TTX-sensitive and TTX-resistant I-Na amplitude by P-CTX-1. Additional experiments using hyper- and isoosmolar D-sorbitol, hyperosmolar sucrose and the free radical scavenging agents Trolox (R) and L-ascorbic acid showed that these agents, unlike D-mannitol, failed to prevent the effects of P-CTX-1 on spike electrogenesis and Na-v channel gating. These selective actions of D-mannitol indicate that it does not act purely as an osmotic agent to reduce swelling of nerves, but involves a more complex action dependent on the Nav channel subtype, possibly to alter or reduce toxin association. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
We have investigated the microstructure and bonding of two biomass-based porous carbon chromatographic stationary phase materials (alginic acid-derived Starbon® and calcium alginate-derived mesoporous carbon spheres (AMCS) and a commercial porous graphitic carbon (PGC), using high resolution transmission electron microscopy, electron energy loss spectroscopy (EELS), N2 porosimetry and X-ray photoelectron spectroscopy (XPS). The planar carbon sp -content of all three material types is similar to that of traditional nongraphitizing carbon although, both biomass-based carbon types contain a greater percentage of fullerene character (i.e. curved graphene sheets) than a non-graphitizing carbon pyrolyzed at the same temperature. This is thought to arise during the pyrolytic breakdown of hexauronic acid residues into C5 intermediates. Energy dispersive X-ray and XPS analysis reveals a homogeneous distribution of calcium in the AMCS and a calcium catalysis mechanism is discussed. That both Starbon® and AMCS, with high-fullerene character, show chromatographic properties similar to those of a commercial PGC material with extended graphitic stacks, suggests that, for separations at the molecular level, curved fullerene- like and planar graphitic sheets are equivalent in PGC chromatography. In addition, variation in the number of graphitic layers suggests that stack depth has minimal effect on the retention mechanism in PGC chromatography. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
A catalytic reactor for the trapping of free radicals originating from gas phase catalytic reactions is described and discussed. Radical trapping and identification were initially carried out using a known radical generator such as dicumyl peroxide. The trapping of radicals was further demonstrated by investigating genuine radical oxidation processes, e.g., benzaldehyde oxidation over manganese and cobalt salts. The efficiency of the reactor was finally proven by the partial oxidation of cyclohexane over MoO3, Cr2O3, and WO3, which allowed the identification of all the radical intermediates responsible for the formation of the products cyclohexanol and cyclohexanone. Assignment of the trapped radicals was carried out using spin trapping technique and X -band electron paramagnetic resonance spectroscopy. © 2010 American Institute of Physics.
Resumo:
The superoxide radical is considered to play important roles in physiological processes as well as in the genesis of diverse cytotoxic conditions such as cancer, various cardiovascular disorders and neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD) and Alzheimer’s disease (AD). The detection and quantification of superoxide within cells is of critical importance to understand biological roles of superoxide and to develop preventive strategies against free radical-mediated diseases. Cyclic nitrone spin traps such as DMPO, EMPO, DEPMPO, BMPO and their derivatives have been widely used in conjunction with ESR spectroscopy to detect cellular superoxide with some success. However, the formation of unstable superoxide adducts from the reaction of cyclic nitrones with superoxide is a stumbling block in detecting superoxide by using electron spin resonance (ESR). A chemiluminescent probe, lucigenin, and fluorogenic probes, hydroethidium and MitoSox, are the other frequently used methods in detecting superoxide. However, luceginen undergoes redox-cycling producing superoxide by itself, and hydroethidium and MitoSox react with other oxidants apart from superoxide forming red fluorescent products contributing to artefacts in these assays. Hence, both methods were deemed to be inappropriate for superoxide detection. In this study, an effective approach, a selective mechanism-based colorimetric detection of superoxide anion has been developed by using silylated azulenyl nitrones spin traps. Since a nitrone moiety and an adjacent silyl group react readily with radicals and oxygen anions respectively, such nitrones can trap superoxide efficiently because superoxide is both a radical and an oxygen anion. Moreover, the synthesized nitrone is designed to be triggered solely by superoxide and not by other commonly observed oxygen radicals such as hydroxyl radical, alkoxyl radicals and peroxyl radical. In vitro studies have shown that these synthesized silylated azylenyl nitrones and the mitochondrial-targeted guanylhydrazone analog can trap superoxide efficiently yielding UV-vis identifiable and even potentially fluorescence-detectable orange products. Therefore, the chromotropic detection of superoxide using these nitrones can be a promising method in contrast to other available methods.
Resumo:
Acknowledgments We thank Craig Lambert for his help in processing the MRS data. The study was funded by the Sir Jules Thorn Charitable Trust (grant ref: 05/JTA) and was supported by the National Institute for Health Research (NIHR) Newcastle Biomedical Research Centre and the Biomedical Research Unit in Lewy Body Dementia based at Newcastle upon Tyne Hospitals National Health Service (NHS) Foundation Trust and Newcastle University and the NIHR Biomedical Research Centre and Biomedical Research Unit in Dementia based at Cambridge University Hospitals NHS Foundation Trust and the University of Cambridge. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.
Resumo:
This text is taken from the postgraduate thesis, which one of the authors (A.B.) developed for the degree of Medical Physicist in the School on Medical Physics of the University of Florence. The text explores the feasibility of quantitative Magnetic Resonance Spectroscopy as a tool for daily clinical routine use. The results and analysis comes from two types of hyper spectral images: the first set are hyper spectral images coming from a standard phantom (reference images); and hyper spectral images obtained from a group of patients who have undergone MRI examinations at the Santa Maria Nuova Hospital. This interdisciplinary work stems from the IFAC-CNR know how in terms of data analysis and nanomedicine, and the clinical expertise of Radiologists and Medical Physicists. The results reported here, which were the subject of the thesis, are original, unpublished, and represent independent work.
Resumo:
Wydział Fizyki
Resumo:
Potenital pathways for the deactivation of hindered amine light stabilisers (HALS) have been investigated by observing reactions of model compounds-based on 4-substituted derivatives of 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO)-with hydroxyl radicals. In these reactions, dilute aqueous suspensions of photocatalytic nanoparticulate titanium dioxide were irradiated with UV light in the presence of water-soluble TEMPO derivatives. Electron spin resonance (ESR) and electrospray ionisation mass-spectrometry (ESI-MS) data were acquired to provide complementary structural elucidation of the odd-and even-electron products of these reactions and both techniques show evidence for the formation of 4-oxo-TEMPO (TEMPONE). TEMPONE formation from the 4-substituted TEMPO compounds is proposed to be initiated by hydrogen abstraction at the 4-position by hydroxyl radical. High-level ab initio calculations reveal a thermodynamic preference for abstraction of this hydrogen but computed activation barriers indicate that, although viable, it is less favoured than hydrogen abstraction from elsewhere on the TEMPO scaffold. If a radical is formed at the 4-position however, calculations elucidate two reaction pathways leading to TEMPONE following combination with either a second hydroxyl radical or dioxygen. An alternate mechanism for conversion of TEMPOL to TEMPONE via an alkoxyl radical intermediate is also considered and found to be competitive with the other pathways. ESI-MS analysis also shows an increased abundance of analogous 4-substituted piperidines during the course of irradiation, suggesting competitive modification at the 1-position to produce a secondary amine. This modification is confirmed by characteristic fragmentation patterns of the ionised piperidines obtained by tandem mass spectrometry. The conclusions describe how reaction at the 4-position could be responsible for the gradual depletion of HALS in pigmented surface coatings and secondly, that modification at nitrogen to form the corresponding secondary amine species may play a greater role in the stabilisation mechanisms of HALS than previously considered.
Resumo:
The cation\[Si,C,O](+) has been generated by 1) the electron ionisation (EI) of tetramethoxysilane and 2) chemical ionisation (CI) of a mixture of silane and carbon monoxide. Collisional activation (CA) experiments performed for mass-selected \[Si,C,O](+), generated by using both methods, indicate that the structure is not inserted OSiC+; however, a definitive structural assignment as Si+-CO, Si+-OC or some cyclic variant is impossible based on these results alone. Neutralisation-reionisation (+NR+) experiments for EI-generated \[Si,C,O](+) reveal a small peak corresponding to SiC+, but no detectable SiO+ signal, and thus establishes the existence of the Si+-CO isomer. CCSD(T)//B3LYP calculations employing a triple-zeta basis set have been used to explore the doublet and quartet potential-energy surfaces of the cation, as well as some important neutral states The results suggest that both Si+-CO and Si+ - OC isomers are feasible; however, the global minimum is (2)Pi SiCO+. Isomeric (2)Pi SiOC+ is 12.1 kcal mol(-1) less stable than (2)Pi SiCO+, and all quartet isomers are much higher in energy. The corresponding neutrals Si-CO and Si-OC are also feasible, but the lowest energy Si - OC isomer ((3)A") is bound by only 1.5 kcal mol(-1). We attribute most, if nor all, of the recovery signal in the +NR' experiment to SiCO+ survivor ions. The nature of the bonding in the lowest energy isomers of Si+ -(CO,OC) is interpreted with the aid of natural bond order analyses, and the ground stale bonding of SiCO+ is discussed in relation to classical analogues such as metal carbonyls and ketenes.
Resumo:
Three new (dialkylamino)pyridine (DAAP)-based ligand amphiphiles 3-5 have been synthesized. All of the compounds possess a metal ion binding subunit in the form of a 2,6-disubstituted DAAP moiety. In addition, at least one ortho-CH2OH substituent is present in all the ligands. Complex formation by these ligands with various metal ions were examined under micellar conditions, but only complexes with Cu(II) ions showed kinetically potent esterolytic capacities under micellar conditions. Complexes with Cu(II) were prepared in host comicellar cetyltrimethylammonium bromide (CTABr) media at pH 7.6. Individual complexes were characterized by UV-visible absorption spectroscopy and electron paramagnetic resonance spectroscopy. These metallomicelles speed the cleavage of the substrates p-nitrophenyl hexanoate or p-nitrophenyl diphenyl phosphate. To ascertain the nature of the active esterolytic species, the stoichiometries of the respective Cu(II) complexes were determined from the kinetic version of Job's plot. In all the instances, 2:1 complex ligand/Cu(II) ion are the most kinetically competent species. The apparent pK(a) values of the Cu(II)-coordinated hydroxyl groups of the ligands 3, 4, and 5, in the comicellar aggregate, are 7.8, 8.0, and 8.0, respectively, as estimated from the rate constant vs pH: profiles of the ester cleavage reactions. The nucleophilic metallomicellar reagents and the second-order "catalytic" rate constants toward esterolysis of the substrate p-nitrophenyl hexanoate (at 25 degrees C, pH 7.6) are 37.5 for 3, 11.4 for 4, and 13.8 for 5. All catalytic systems comprising the coaggregates of 3, 4, or 5 and CTABr demonstrate turnover behavior in the presence of excess substrate.