922 resultados para Electrical parameter
Resumo:
BACKGROUND: Direct colonic electrical stimulation may prove to be a treatment option for specific motility disorders such as chronic constipation. The aim of this study was to provoke colonic contractions using electrical stimulation delivered from a battery-operated device. METHODS: Electrodes were inserted into the caecal seromuscular layer of eight anaesthetized pigs. Contractions were induced by a neurostimulator (Medtronic 3625). Caecal motility was measured simultaneously by video image analysis, manometry and a technique assessing colonic transit. RESULTS: Caecal contractions were generated using 8-10 V amplitude, 1000 micros pulse width, 120 Hz frequency for 10-30 s, with an intensity of 7-15 mA. The maximal contraction strength was observed after 20-25 s. Electrical stimulation was followed by a relaxation phase of 1.5-2 min during which contractions propagated orally and aborally over at least 10 cm. Spontaneous and stimulated caecal motility values were significantly different for both intraluminal pressure (mean(s.d.) 332(124) and 463(187) mmHg respectively; P < 0.001, 42 experiments) and movement of contents (1.6(0.9) and 3.9(2.8) mm; P < 0.001, 40 experiments). CONCLUSION: Electrical stimulation modulated caecal motility, and provoked localized and propagated colonic contractions.
Resumo:
The objective of this work was to evaluate the effects of temperature (10, 20, 30, 20/10 and 30/10ºC) and period of storage on electrical conductivity (EC) in four seed lots of corn (Zea mays L.), as well as the mineral composition of the soaking solution. EC test determines indirectly the integrity of seed membrane systems, and is used for the assessment of seed vigor, because this test detects the seed deterioration process since its early phase. The research comprised determinations of water content, germination, accelerated aging (AA), cold (CT) and EC vigor tests, and determinations of Ca2+, Mg2+ and K+ release to the solution, after seed soaking of four corn seed lots. The evaluations were performed each four months during a period of 16 months. For statistical analysis, a completely randomized split plot design was used with eight replications. Except for seed lots stored at 10ºC, all vigor evaluations revealed a decline in vigor, but AA and CT showed more sensitiveness to declines of seed physiological quality than EC. Potassium was the main leached ion regardless of the storage temperature.
Resumo:
This tutorial review details some of the recent advances in signal analyses applied to event-related potential (ERP) data. These "electrical neuroimaging" analyses provide reference-independent measurements of response strength and response topography that circumvent statistical and interpretational caveats of canonical ERP analysis methods while also taking advantage of the greater information provided by high-density electrode montages. Electrical neuroimaging can be applied across scales ranging from group-averaged ERPs to single-subject and single-trial datasets. We illustrate these methods with a tutorial dataset and place particular emphasis on their suitability for studies of clinical and/or developmental populations.
Resumo:
The infiltration of river water into aquifers is of high relevance to drinking-water production and is a key driver of biogeochemical processes in the hyporheic and riparian zone, but the distribution and quantification of the infiltrating water are difficult to determine using conventional hydrological methods (e.g., borehole logging and tracer tests). By time-lapse inverting crosshole ERT (electrical resistivity tomography) monitoring data, we imaged groundwater flow patterns driven by river water infiltrating a perialpine gravel aquifer in northeastern Switzerland. This was possible because the electrical resistivity of the infiltrating water changed during rainfall-runoff events. Our time-lapse resistivity models indicated rather complex flow patterns as a result of spatially heterogeneous bank filtration and aquifer heterogeneity. The upper part of the aquifer was most affected by the river infiltrate, and the highest groundwater velocities and possible preferential flow occurred at shallow to intermediate depths. Time series of the reconstructed resistivity models matched groundwater electrical resistivity data recorded on borehole loggers in the upper and middle parts of the aquifer, whereas the resistivity models displayed smaller variations and delayed responses with respect to the logging data. in the lower part. This study demonstrated that crosshole ERT monitoring of natural electrical resistivity variations of river infiltrate could be used to image and quantify 3D bank filtration and aquifer dynamics at a high spatial resolution.
Resumo:
INTRODUCTION: In this study we evaluated the validity of garment-based quadriceps stimulation (GQS) for assessment of muscle inactivation in comparison with femoral nerve stimulation (FNS). METHODS: Inactivation estimates (superimposed doublet torque), self-reported discomfort, and twitch and doublet contractile properties were compared between GQS and FNS in 15 healthy subjects. RESULTS: Superimposed doublet torque was significantly lower for GQS than for FNS at 20% and 40% maximum voluntary contraction (MVC) (P < 0.01), but not at 60%, 80%, and 100% MVC. Discomfort scores were systematically lower for GQS than for FNS (P < 0.05). Resting twitch and doublet peak torque were lower for GQS, and time to peak torque was shorter for GQS than for FNS (P < 0.01). CONCLUSIONS: GQS can be used with confidence for straightforward evaluation of quadriceps muscle inactivation, whereas its validity for assessment of contractile properties remains to be determined. Muscle Nerve 51: 117-124, 2015.
Resumo:
In this work, zinc indium tin oxide layers with different compositions are used as the active layer of thin film transistors. This multicomponent transparent conductive oxide is gaining great interest due to its reduced content of the scarce indium element. Experimental data indicate that the incorporation of zinc promotes the creation of oxygen vacancies. In thin-film transistors this effect leads to a higher threshold voltage values. The field-effect mobility is also strongly degraded, probably due to coulomb scattering by ionized defects. A post deposition annealing in air reduces the density of oxygen vacancies and improves the fieldeffect mobility by orders of magnitude. Finally, the electrical characteristics of the fabricated thin-film transistors have been analyzed to estimate the density of states in the gap of the active layers. These measurements reveal a clear peak located at 0.3 eV from the conduction band edge that could be attributed to oxygen vacancies.
Resumo:
Quantifying the spatial configuration of hydraulic conductivity (K) in heterogeneous geological environments is essential for accurate predictions of contaminant transport, but is difficult because of the inherent limitations in resolution and coverage associated with traditional hydrological measurements. To address this issue, we consider crosshole and surface-based electrical resistivity geophysical measurements, collected in time during a saline tracer experiment. We use a Bayesian Markov-chain-Monte-Carlo (McMC) methodology to jointly invert the dynamic resistivity data, together with borehole tracer concentration data, to generate multiple posterior realizations of K that are consistent with all available information. We do this within a coupled inversion framework, whereby the geophysical and hydrological forward models are linked through an uncertain relationship between electrical resistivity and concentration. To minimize computational expense, a facies-based subsurface parameterization is developed. The Bayesian-McMC methodology allows us to explore the potential benefits of including the geophysical data into the inverse problem by examining their effect on our ability to identify fast flowpaths in the subsurface, and their impact on hydrological prediction uncertainty. Using a complex, geostatistically generated, two-dimensional numerical example representative of a fluvial environment, we demonstrate that flow model calibration is improved and prediction error is decreased when the electrical resistivity data are included. The worth of the geophysical data is found to be greatest for long spatial correlation lengths of subsurface heterogeneity with respect to wellbore separation, where flow and transport are largely controlled by highly connected flowpaths.
Resumo:
CONTEXT: A shortening of the atrial refractory period has been considered as the main mechanism for the increased risk of atrial fibrillation in hyperthyroidism. However, other important factors may be involved. OBJECTIVE: Our objective was to determine the activity of abnormal supraventricular electrical depolarizations in response to elevated thyroid hormones in patients without structural heart disease. PATIENTS AND DESIGN: Twenty-eight patients (25 females, three males, mean age 43+/-11 yr) with newly diagnosed and untreated hyperthyroidism were enrolled in a prospective trial after exclusion of heart disease. Patients were followed up for 16 +/- 6 months and studied at baseline and 6 months after normalization of serum TSH levels. MAIN OUTCOME MEASURES: The incidence of abnormal premature supraventricular depolarizations (SVPD) and the number of episodes of supraventricular tachycardia was defined as primary outcome measurements before the start of the study. In addition, heart rate oscillations (turbulence) after premature depolarizations and heart rate variability were compared at baseline and follow-up. RESULTS: SVPDs decreased from 59 +/- 29 to 21 +/- 8 per 24 h (P = 0.003), very early SVPDs (so called P on T) decreased from 36 +/- 24 to 3 +/- 1 per 24 h (P < 0.0001), respectively, and nonsustained supraventricular tachycardias decreased from 22 +/- 11 to 0.5 +/- 0.2 per 24 h (P = 0.01) after normalization of serum thyrotropin levels. The hyperthyroid phase was characterized by an increased heart rate (93 +/- 14 vs. 79 +/- 8 beats/min, P < 0.0001) and a decreased turbulence slope (3.6 vs. 9.2, P = 0.003), consistent with decreased vagal tone. This was confirmed by a significant decrease of heart rate variability. CONCLUSION: Hyperthyroidism is associated with an increased supraventricular ectopic activity in patients with normal hearts. The activation of these arrhythmogenic foci by elevated thyroid hormones may be an important causal link between hyperthyroidism and atrial fibrillation.
Resumo:
Abstract
Resumo:
A comment about the article “Local sensitivity analysis for compositional data with application to soil texture in hydrologic modelling” writen by L. Loosvelt and co-authors. The present comment is centered in three specific points. The first one is related to the fact that the authors avoid the use of ilr-coordinates. The second one refers to some generalization of sensitivity analysis when input parameters are compositional. The third tries to show that the role of the Dirichlet distribution in the sensitivity analysis is irrelevant
Resumo:
The Atlas Mountains in Morocco are considered as type examples of intracontinental chains, with high topography that contrasts with moderate crustal shortening and thickening. Whereas recent geological studies and geodynamic modeling have suggested the existence of dynamic topography to explain this apparent contradiction, there is a lack of modern geophysical data at the crustal scale to corroborate this hypothesis. Newly-acquired magnetotelluric data image the electrical resistivity distribution of the crust from the Middle Atlas to the Anti-Atlas, crossing the tabular Moulouya Plain and the High Atlas. All the units show different and unique electrical signatures throughout the crust reflecting the tectonic history of development of each one. In the upper crust electrical resistivity values may be associated to sediment sequences in the Moulouya and Anti-Atlas and to crustal scale fault systems in the High Atlas developed during the Cenozoic times. In the lower crust the low resistivity anomaly found below the Mouluya plain, together with other geophysical (low velocity anomaly, lack of earthquakes and minimum Bouguer anomaly) and geochemical (Neogene-Quaternary intraplate alkaline volcanic fields) evidence, infer the existence of a small degree of partial melt at the base of the lower crust. The low resistivity anomaly found below the Anti-Atlas may be associated with a relict subduction of Precambrian oceanic sediments, or to precipitated minerals during the release of fluids from the mantle during the accretion of the Anti-Atlas to the West African Supercontinent during the Panafrican orogeny ca. 685 Ma).
Resumo:
The ground-penetrating radar (GPR) geophysical method has the potential to provide valuable information on the hydraulic properties of the vadose zone because of its strong sensitivity to soil water content. In particular, recent evidence has suggested that the stochastic inversion of crosshole GPR traveltime data can allow for a significant reduction in uncertainty regarding subsurface van Genuchten-Mualem (VGM) parameters. Much of the previous work on the stochastic estimation of VGM parameters from crosshole GPR data has considered the case of steady-state infiltration conditions, which represent only a small fraction of practically relevant scenarios. We explored in detail the dynamic infiltration case, specifically examining to what extent time-lapse crosshole GPR traveltimes, measured during a forced infiltration experiment at the Arreneas field site in Denmark, could help to quantify VGM parameters and their uncertainties in a layered medium, as well as the corresponding soil hydraulic properties. We used a Bayesian Markov-chain-Monte-Carlo inversion approach. We first explored the advantages and limitations of this approach with regard to a realistic synthetic example before applying it to field measurements. In our analysis, we also considered different degrees of prior information. Our findings indicate that the stochastic inversion of the time-lapse GPR data does indeed allow for a substantial refinement in the inferred posterior VGM parameter distributions compared with the corresponding priors, which in turn significantly improves knowledge of soil hydraulic properties. Overall, the results obtained clearly demonstrate the value of the information contained in time-lapse GPR data for characterizing vadose zone dynamics.
Resumo:
We have constructed a forward modelling code in Matlab, capable of handling several commonly used electrical and electromagnetic methods in a 1D environment. We review the implemented electromagnetic field equations for grounded wires, frequency and transient soundings and present new solutions in the case of a non-magnetic first layer. The CR1Dmod code evaluates the Hankel transforms occurring in the field equations using either the Fast Hankel Transform based on digital filter theory, or a numerical integration scheme applied between the zeros of the Bessel function. A graphical user interface allows easy construction of 1D models and control of the parameters. Modelling results are in agreement with other authors, but the time of computation is less efficient than other available codes. Nevertheless, the CR1Dmod routine handles complex resistivities and offers solutions based on the full EM-equations as well as the quasi-static approximation. Thus, modelling of effects based on changes in the magnetic permeability and the permittivity is also possible.
Resumo:
Multi-center studies using magnetic resonance imaging facilitate studying small effect sizes, global population variance and rare diseases. The reliability and sensitivity of these multi-center studies crucially depend on the comparability of the data generated at different sites and time points. The level of inter-site comparability is still controversial for conventional anatomical T1-weighted MRI data. Quantitative multi-parameter mapping (MPM) was designed to provide MR parameter measures that are comparable across sites and time points, i.e., 1 mm high-resolution maps of the longitudinal relaxation rate (R1 = 1/T1), effective proton density (PD(*)), magnetization transfer saturation (MT) and effective transverse relaxation rate (R2(*) = 1/T2(*)). MPM was validated at 3T for use in multi-center studies by scanning five volunteers at three different sites. We determined the inter-site bias, inter-site and intra-site coefficient of variation (CoV) for typical morphometric measures [i.e., gray matter (GM) probability maps used in voxel-based morphometry] and the four quantitative parameters. The inter-site bias and CoV were smaller than 3.1 and 8%, respectively, except for the inter-site CoV of R2(*) (<20%). The GM probability maps based on the MT parameter maps had a 14% higher inter-site reproducibility than maps based on conventional T1-weighted images. The low inter-site bias and variance in the parameters and derived GM probability maps confirm the high comparability of the quantitative maps across sites and time points. The reliability, short acquisition time, high resolution and the detailed insights into the brain microstructure provided by MPM makes it an efficient tool for multi-center imaging studies.
Resumo:
The effect of motor training using closed loop controlled Functional Electrical Stimulation (FES) on motor performance was studied in 5 spinal cord injured (SCI) volunteers. The subjects trained 2 to 3 times a week during 2 months on a newly developed rehabilitation robot (MotionMaker?). The FES induced muscle force could be adequately adjusted throughout the programmed exercises by the way of a closed loop control of the stimulation currents. The software of the MotionMaker? allowed spasms to be detected accurately and managed in a way to prevent any harm to the SCI persons. Subjects with incomplete SCI reported an increased proprioceptive awareness for motion and were able to achieve a better voluntary activation of their leg muscles during controlled FES. At the end of the training, the voluntary force of the 4 incomplete SCI patients was found increased by 388% on their most affected leg and by 193% on the other leg. Active mobilisation with controlled FES seems to be effective in improving motor function in SCI persons by increasing the sensory input to neuronal circuits involved in motor control as well as by increasing muscle strength.