815 resultados para Electrical energy consumption
Resumo:
Flexible cylindrical structures subjected to wind loading experience vibrations from periodic shedding of vortices in their wake. Vibrations become excessive when the natural frequencies of the cylinder coincide with the vortex shedding frequency. In this study, cylinder vibrations are transmitted to a beam inside the structure via dynamic magnifier system. This system amplifies the strain experienced by piezoelectric patches bonded to the beam to maximize the conversion from vibrational energy into electrical energy. Realworld applicability is tested using a wind tunnel to create vortex shedding and comparing the results to finite element modeling that shows the structural vibrational modes. A crucial part of this study is conditioning and storing the harvested energy, focusing on theoretical modeling, design parameter optimization, and experimental validation. The developed system is helpful in designing wind-induced energy harvesters to meet the necessity for novel energy resources.
Resumo:
Wireless enabled portable devices must operate with the highest possible energy efficiency while still maintaining a minimum level and quality of service to meet the user's expectations. The authors analyse the performance of a new pointer-based medium access control protocol that was designed to significantly improve the energy efficiency of user terminals in wireless local area networks. The new protocol, pointer controlled slot allocation and resynchronisation protocol (PCSAR), is based on the existing IEEE 802.11 point coordination function (PCF) standard. PCSAR reduces energy consumption by removing the need for power saving stations to remain awake and listen to the channel. Using OPNET, simulations were performed under symmetric channel loading conditions to compare the performance of PCSAR with the infrastructure power saving mode of IEEE 802.11, PCF-PS. The simulation results demonstrate a significant improvement in energy efficiency without significant reduction in performance when using PCSAR. For a wireless network consisting of an access point and 8 stations in power saving mode, the energy saving was up to 31% while using PCSAR instead of PCF-PS, depending upon frame error rate and load. The results also show that PCSAR offers significantly reduced uplink access delay over PCF-PS while modestly improving uplink throughput.
Resumo:
The performance of a new pointer-based medium-access control protocol that was designed to significantly improve the energy efficiency of user terminals in quality-of-service-enabled wireless local area networks was analysed. The new protocol, pointer-controlled slot allocation and resynchronisation protocol (PCSARe), is based on the hybrid coordination function-controlled channel access mode of the IEEE 802.11e standard. PCSARe reduces energy consumption by removing the need for power-saving stations to remain awake for channel listening. Discrete event network simulations were performed to compare the performance of PCSARe with the non-automatic power save delivery (APSD) and scheduled-APSD power-saving modes of IEEE 802.11e. The simulation results show a demonstrable improvement in energy efficiency without significant reduction in performance when using PCSARe. For a wireless network consisting of an access point and eight stations in power-saving mode, the energy saving was up to 39% when using PCSARe instead of IEEE 802.11e non-APSD. The results also show that PCSARe offers significantly reduced uplink access delay over IEEE 802.11e non-APSD, while modestly improving the uplink throughput. Furthermore, although both had the same energy consumption, PCSARe gave a 25% reduction in downlink access delay compared with IEEE 802.11e S-APSD.
Resumo:
We study the residential demand for electricity and gas, working with nationwide household-level data that cover recent years, namely 1997-2007. Our dataset is a mixed panel/multi-year cross-sections of dwellings/households in the 50 largest metropolitan areas in the United States as of 2008. We estimate static and dynamic models of electricity and gas demand. We find strong household response to energy prices, both in the short and long term. From the static models, we get estimates of the own price elasticity of electricity demand in the -0.860 to -0.667 range, while the own price elasticity of gas demand is -0.693 to -0.566. These results are robust to a variety of checks. Contrary to earlier literature (Metcalf and Hassett, 1999; Reiss and White, 2005), we find no evidence of significantly different elasticities across households with electric and gas heat. The price elasticity of electricity demand declines with income, but the magnitude of this effect is small. These results are in sharp contrast to much of the literature on residential energy consumption in the United States, and with the figures used in current government agency practice. Our results suggest that there might be greater potential for policies which affect energy price than may have been previously appreciated. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Embedded processors are used in numerous devices executing dedicated applications. This setting makes it worthwhile to optimize the processor to the application it executes, in order to increase its power-efficiency. This paper proposes to enhance direct mapped data caches with automatically tuned randomized set index functions to achieve that goal. We show how randomization functions can be automatically generated and compare them to traditional set-associative caches in terms of performance and energy consumption. A 16 kB randomized direct mapped cache consumes 22% less energy than a 2-way set-associative cache, while it is less than 3% slower. When the randomization function is made configurable (i.e., it can be adapted to the program), the additional reduction of conflicts outweighs the added complexity of the hardware, provided there is a sufficient amount of conflict misses.
Resumo:
Hydro-entanglement is a versatile process for bonding non-woven fabrics by the use of fine, closely-spaced, high-velocity jets of water to rearrange and entangle arrays of fibres. The cost of the process mainly depends on the amount of energy consumed. Therefore, the economy of the process is highly affected by optimisation of the energy required. In this paper a parameter called critical pressure is introduced which is indicative of the energy level requirement. The results of extensive experimental work are reported and analysed to give a clear understanding of the effect of the web and fibre properties on the critical pressure in the hydro-entanglement process. Furthermore, different energy-transfer distribution schemes are tested on various fabrics. The optimum scheme which involves the lowest energy consumption and the best fabric properties is identified. © 2001 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Dynamic Voltage and Frequency Scaling (DVFS) exhibits fundamental limitations as a method to reduce energy consumption in computing systems. In the HPC domain, where performance is of highest priority and codes are heavily optimized to minimize idle time, DVFS has limited opportunity to achieve substantial energy savings. This paper explores if operating processors Near the transistor Threshold Volt- age (NTV) is a better alternative to DVFS for break- ing the power wall in HPC. NTV presents challenges, since it compromises both performance and reliability to reduce power consumption. We present a first of its kind study of a significance-driven execution paradigm that selectively uses NTV and algorithmic error tolerance to reduce energy consumption in performance- constrained HPC environments. Using an iterative algorithm as a use case, we present an adaptive execution scheme that switches between near-threshold execution on many cores and above-threshold execution on one core, as the computational significance of iterations in the algorithm evolves over time. Using this scheme on state-of-the-art hardware, we demonstrate energy savings ranging between 35% to 67%, while compromising neither correctness nor performance.
Resumo:
We present TProf, an energy profiling tool for OpenMP-like task-parallel programs. To compute the energy consumed by each task in a parallel application, TProf dynamically traces the parallel execution and uses a novel technique to estimate the per-task energy consumption. To achieve this estimation, TProf apportions the total processor energy among cores and overcomes the limitation of current works which would otherwise make parallel accounting impossible to achieve. We demonstrate the value of TProf by characterizing a set of task parallel programs, where we find that data locality, memory access patterns and task working sets are responsible for significant variance in energy consumption between seemingly homogeneous tasks. In addition, we identify opportunities for fine-grain energy optimization by applying per-task Dynamic Voltage and Frequency Scaling (DVFS).
Resumo:
Energy consumption and total cost of ownership are daunting challenges for Datacenters, because they scale disproportionately with performance. Datacenters running financial analytics may incur extremely high operational costs in order to meet performance and latency requirements of their hosted applications. Recently, ARM-based microservers have emerged as a viable alternative to high-end servers, promising scalable performance via scale-out approaches and low energy consumption. In this paper, we investigate the viability of ARM-based microservers for option pricing, using the Monte Carlo and Binomial Tree kernels. We compare an ARM-based microserver against a state-of-the-art x86 server. We define application-related but platform-independent energy and performance metrics to compare those platforms fairly in the context of datacenters for financial analytics and give insight on the particular requirements of option pricing. Our experiments show that through scaling out energyefficient compute nodes within a 2U rack-mounted unit, an ARM-based microserver consumes as little as about 60% of the energy per option pricing compared to an x86 server, despite having significantly slower cores. We also find that the ARM microserver scales enough to meet a high fraction of market throughput demand, while consuming up to 30% less energy than an Intel server
Resumo:
We examine the effect of energy efficiency incentives on household energy efficiency home improvements. Starting in February 2007, Italian homeowners have been able to avail themselves of tax credits on the purchase and installation costs of certain types of energy efficiency renovations. We examine two such renovations—door/window replacements and heating system replacements—using multi-year cross-section data from the Italian Consumer Expenditure Survey and focusing on a narrow period around the introduction of the tax credits. Our regressions control for dwelling and household characteristics and economy-wide factors likely to influence the replacement rates. The effects of the policy are different for the two types of renovations. With window replacements, the policy is generally associated with a 30 % or stronger increase in the renovation rates and number of renovations. In the simplest econometric models, the effect is not statistically significant, but the results get stronger when we allow for heterogeneous effects across the country. With heating system replacements, simpler models suggest that the tax credits policy had no effect whatsoever or that free riding was rampant, i.e., people are now accepting subsidies for replacements that they would have done anyway. Further examination suggests a strong degree of heterogeneity in the effects across warmer and colder parts of the country, and effects in the colder areas that are even more pronounced than those for window replacements. These results should, however, be interpreted with caution due to the low rates of renovations, which imply that the effects are estimated relatively imprecisely.
Resumo:
Thermal stability is of major importance in polymer extrusion, where product quality is dependent upon the level of melt homogeneity achieved by the extruder screw. Extrusion is an energy intensive process and optimisation of process energy usage while maintaining melt stability is necessary in order to produce good quality product at low unit cost. Optimisation of process energy usage is timely as world energy prices have increased rapidly over the last few years. In the first part of this study, a general discussion was made on the efficiency of an extruder. Then, an attempt was made to explore correlations between melt thermal stability and energy demand in polymer extrusion under different process settings and screw geometries. A commodity grade of polystyrene was extruded using a highly instrumented single screw extruder, equipped with energy consumption and melt temperature field measurement. Moreover, the melt viscosity of the experimental material was observed by using an off-line rheometer. Results showed that specific energy demand of the extruder (i.e. energy for processing of unit mass of polymer) decreased with increasing throughput whilst fluctuation in energy demand also reduced. However, the relationship between melt temperature and extruder throughput was found to be complex, with temperature varying with radial position across the melt flow. Moreover, the melt thermal stability deteriorated as throughput was increased, meaning that a greater efficiency was achieved at the detriment of melt consistency. Extruder screw design also had a significant effect on the relationship between energy consumption and melt consistency. Overall, the relationship between the process energy demand and thermal stability seemed to be negatively correlated and also it was shown to be highly complex in nature. Moreover, the level of process understanding achieved here can help to inform selection of equipment and setting of operating conditions to optimise both energy and thermal efficiencies in parallel.
Resumo:
Extrusion is one of the fundamental production methods in the polymer processing industry and is used in the production of a large number of commodities in a diverse industrial sector. Being an energy intensive production method, process energy efficiency is one of the major concerns and the selection of the most energy efficient processing conditions is a key to reducing operating costs. Usually, extruders consume energy through the drive motor, barrel heaters, cooling fans, cooling water pumps, gear pumps, etc. Typically the drive motor is the largest energy consuming device in an extruder while barrel/die heaters are responsible for the second largest energy demand. This study is focused on investigating the total energy demand of an extrusion plant under various processing conditions while identifying ways to optimise the energy efficiency. Initially, a review was carried out on the monitoring and modelling of the energy consumption in polymer extrusion. Also, the power factor, energy demand and losses of a typical extrusion plant were discussed in detail. The mass throughput, total energy consumption and power factor of an extruder were experimentally observed over different processing conditions and the total extruder energy demand was modelled empirically and also using a commercially available extrusion simulation software. The experimental results show that extruder energy demand is heavily coupled between the machine, material and process parameters. The total power predicted by the simulation software exhibits a lagging offset compared with the experimental measurements. Empirical models are in good agreement with the experimental measurements and hence these can be used in studying process energy behaviour in detail and to identify ways to optimise the process energy efficiency.
Resumo:
Building Information Modelling (BIM) is growing in pace, not only in design and construction stages, but also in the analysis of facilities throughout their life cycle. With this continued growth and utilisation of BIM processes, comes the possibility to adopt such procedures, to accurately measure the energy efficiency of buildings, to accurately estimate their energy usage. To this end, the aim of this research is to investigate if the introduction of BIM Energy Performance Assessment in the form of software analysis, provides accurate results, when compared with actual energy consumption recorded. Through selective sampling, three domestic case studies are scrutinised, with baseline figures taken from existing energy providers, the results scrutinised and compared with calculations provided from two separate BIM energy analysis software packages. Of the numerous software packages available, criterion sampling is used to select two of the most prominent platforms available on the market today. The two packages selected for scrutiny are Integrated Environmental Solutions - Virtual Environment (IES-VE) and Green Building Studio (GBS). The results indicate that IES-VE estimated the energy use in region of ±8% in two out of three case studies while GBS estimated usage approximately ±5%. The findings indicate that the introduction of BIM energy performance assessment, using proprietary software analysis, is a viable alternative to manual calculations of building energy use, mainly due to the accuracy and speed of assessing, even the most complex models. Given the surge in accurate and detailed BIM models and the importance placed on the continued monitoring and control of buildings energy use within today’s environmentally conscious society, this provides an alternative means by which to accurately assess a buildings energy usage, in a quick and cost effective manner.
Resumo:
Energy consumption has become an important area of research of late. With the advent of new manycore processors, situations have arisen where not all the processors need to be active to reach an optimal relation between performance and energy usage. In this paper a study of the power and energy usage of a series of benchmarks, the PARSEC and the SPLASH- 2X Benchmark Suites, on the Intel Xeon Phi for different threads configurations, is presented. To carry out this study, a tool was designed to monitor and record the power usage in real time during execution time and afterwards to compare the r
Resumo:
Globally vehicle operators are experiencing rising fuel costs and increased
running expenses as governments around the world attempt to decrease carbon dioxide emissions and fossil fuel consumption, due to global warming and the drive to reduce dependency on fossil fuels. Recent advances in hybrid vehicle design have made great strides towards more efficient operation, with regenerative braking being widely used to capture otherwise lost energy. In this paper a hybrid series bus is developed a step further, by installing another method of energy capture on the vehicle. In this case, it is in the form of the Organic Rankine Cycle (ORC). The waste heat expelled to the exhaust and coolant streams is recovered and converted to electrical energy which is then stored in the hybrid vehicles batteries. The electrical energy can then be used for the auxiliary power circuit or to assist in vehicle propulsion, thus reducing the load on the engine, thereby improving the overall fuel economy of the vehicle and reducing carbon dioxide emissions.