955 resultados para Electric switchgear
Resumo:
In this paper, melt crystallization of poly(ether ether ketone ketone) (PEEKK) under strong electric field was investigated. In the crystal structure of PEEKK, the length of c axis was found to he 1.075 nm, increasing by 7% compared to that of PEEKK crystallized without strong electric field. The molecule chains might take a more extended conformation through the opening of the bridge bond angles by increasing from 124 degrees to 144 degrees under strong electric field in the crystal structure.
Resumo:
The irreversible conformational transition of bovine serum albumin (BSA) from alpha-helix to beta-sheet, induced by electric field near the electrode surface, was monitored by circular dichroism (CD) with a long optical path thin layer cell (LOPTLC).
Resumo:
Two new compounds with the formula of CdYMWO7 (M = Cr, Mn) were prepared by solid state reaction. They crystallized with orthorhombic structure with the cell parameters of a = 11.7200 Angstrom, b = 7.1779 Angstrom, c = 6.9805 Angstrom (CdYCrWO7), and a = 11.7960 Angstrom, b = 6.1737 Angstrom, c = 7.6530 Angstrom (CdYMnWO7). These compounds are insulators with high resistivities at room temperature. The temperature dependence of the magnetic susceptibility of CdYMWO7 (M = Cr and Mn) show Curie-Weiss Law's behaviors from 80 to 300 K. The magnetic moments at room temperature fit very well with those corresponding to Cr3+ and Mn3+ ions. This suggests that both Cr and Mn ions exist in + 3 oxidation state in CdYMWO7 compounds. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Bi1-xLaxSrMn2O6 and BiSr1-xCaxMn2O6 are prepared by solid state reaction. They are n-type semiconductors with ferromagnetism at room temperture. When Bi is substituted partly by rare earth, a negative magnetoresistance effect is observed in the pellet of Bi1-xLaxSrMn2O6. There are semiconductor-metal transitions at 820 K in BiSrMn2O6. The transitions are attributed to the magnetic transition at high temperature. The substitution of Ca for Sr makes the transition temperature increase. However, when Bi is partly substituted by La, the solid solution does not change into metal. (C) 1996 Academic Press, Inc.
Resumo:
The rare earth complex oxides with different types have been synthesized. Their structures and electric properties have been investigated. According to our experimental results, the effects of the outest shell electronic configuration, electron spin state, electron transport path and formation of cluster on the electric properties of rare earth complex oxides have been summarized. When the electrons in the outest shell of the central metallic ion are unpair, and the outest shell is not half-filled, the electric conductibilities of these compounds are better, If there is a -M-X-M-X- or -M-M-M- (the distances between two atoms <0.31 nm) continuous electron transport path, and the electron configurations of the central metallic ion conform to the above condition, then the electric conductibilities are good, The isolate cluster can not become the continuous electron transport path, therefore, the formation of the isolate cluster will reduce the conductibility.
Resumo:
The net charges at atoms in the high-temperature superconductor TlBa2Can-1CunO2n+3 (n = 1 to 3) are calculated by means of the tight-binding approximation based on the EHMO method. The results indicate that the charge distribution in this kind of compounds possesses a specially layered arrangement. An insulating Ba-Ba layer is inserted between the Cu-O layer and the Tl-O layer. There may exist a weak coupling between the Cu-O layer and the Tl-O layer through the interaction of the same O(2) atom with both the Cu atom and the Tl atom. The existence of the Ca in the compounds can cause the valence fluctuation at the Cu atom. The calculated electric field gradients at atoms implies that the conducting electron or hole may move in the Cu-O layer, which is closest to the Tl-O layer, along the a-b plane.
Resumo:
The difference between the Mossbauer parameters for EuBa2Cu3O7-x with dc electric current and those without dc electric current at 83 K has been observed. The change in isomer shift, electric quadrupole splitting and the asymmetry parameter of the electric field gradient at the Eu-151 nucleus may be caused by the movement of a mass of conduction electrons along a certain direction in the EuBa2Cu3O7-x crystal with a layered structure.
Resumo:
In this paper, the electric dichroism of cetylpyridinium bromide (CPB) has been found and studied by spectroelectrochemistry with a long optical path length thin-layer cell (LOPTLC) for the first time. The CPB molecule with a long carbon chain and a polar pyridinium ring is anisotropic in molecular configuration or in polarizability. In the electric field of a thin-layer cell, the CPB molecule reorientates along the direction of the electric field and exhibits electric dichroism, which results in the increase of absorbance of CPB in the UV-vis range. By use of in situ measurement of spectroelectrochemistry, the order parameters of long molecular axis (S = 0.845) and short molecular axis (D = 0.155) and the angle between the long axis direction of the CPB molecule and the direction normal to the electrode surface (theta = 18-degrees 44') have been determined. These data were used to describe the state of arrangement of the molecules in the solution. The reorientation of CPB molecules is the result of the interaction between the anisotropic molecules and electric field. The effects of the concentration of CPB and of the applied electric field on the electric dichroism have been investigated.
Resumo:
A perturbation method is used to study effective response of nonlinear Kerr composites, which are subject to the constitutive relation of electric displacement and electric field, D-alpha = epsilon(alpha)E + chi(alpha)vertical bar E vertical bar(2)E. Under the external AC and DC electric field E-app = E-a (1 + sinwt), the effective nonlinear responses and local potentials are induced by the cubic nonlinearity of Kerr materials at all harmonics. As an example in three dimensions, we have investigated this kind of nonlinear composites with spherical inclusions embedded in a host. At all harmonic frequencies, the potentials in inclusion and host regions are derived. Furthermore, the formulae of the effective linear and nonlinear responses are given in the dilute limit.
Resumo:
This paper investigates analytically the electric field distribution of graded spherical core-shell metamaterials, whose permittivity is given by the graded Drude model. Under the illumination of a uniform incident optical field, the obtained results show that the electrical field distribution in the shell region is controllable and the electric field peak's position inside the spherical shell can be confined in a desired position by varying the frequency of the optical field as well as the parameters of the graded dielectric profiles. It has also offered an intuitive explanation for controlling the local electric field by graded metamaterials.
Resumo:
The local electric-field distribution has been investigated in a core-shell cylindrical metamaterial structure under the illumination of a uniform incident optical field. The structure consists of a homogeneous dielectric core, a shell of graded metal-dielectric metamaterial, embedded in a uniform matrix. In the quasistatic limit, the permittivity of the metamaterial is given by the graded Drude model. The local electric potentials and hence the electric fields have been derived exactly and analytically in terms of hypergeometric functions. Our results showed that the peak of the electric field inside the cylindrical shell can be confined in a desired position by varying the frequency of the optical field and the parameters of the graded profiles. Thus, by fabricating graded metamaterials, it is possible to control electric-field distribution spatially. We offer an intuitive explanation for the gradation-controlled electric-field distribution.
Resumo:
The perturbation method is developed to investigate the effective nonlinear dielectric response of Kerr composites when the external ac and dc electric field is applied. Under the external ac and dc electric field E-app=E-a(1+sin omegat), the effective coupling nonlinear response can be induced by the cubic nonlinearity of Kerr nonlinear materials at the zero frequency, the finite basic frequency omega, the second and the third harmonics, 2omega and 3omega, and so on. As an example, we have investigated the cylindrical inclusions randomly embedded in a host and derived the formulas of the effective nonlinear dielectric response at harmonics in dilute limit. For a higher concentration of inclusions, we have proposed a nonlinear effective-medium approximation by introducing the general effective nonlinear response. With the relationships between the effective nonlinear response at harmonics and the general effective nonlinear response, we have derived a set of formulas of the effective nonlinear dielectric responses at harmonics for a larger volume fraction. (C) 2004 American Institute of Physics.
Resumo:
The fifth-order effective nonlinear responses at fundament frequency and higher-order harmonics are given for nonlinear composites, which obey a current-field relation of the form J = sigmaE + x\E\(2) E, if a sinusoidal alternating current (AC) external field with finite frequency omega is applied. As two examples, we have investigated the cylinder and spherical inclusion embedded in a host and, for larger volume fraction, also derived the formulae of effective nonlinear responses at higher-order harmonics by the aid of the general effective response definition. Furthermore, the relationships between effective nonlinear responses at harmonics are given. (C) 2003 Elsevier Science B.V. All rights reserved.