980 resultados para Ecological design
Resumo:
Computer Science is a subject which has difficulty in marketing itself. Further, pinning down a standard curriculum is difficult-there are many preferences which are hard to accommodate. This paper argues the case that part of the problem is the fact that, unlike more established disciplines, the subject does not clearly distinguish the study of principles from the study of artifacts. This point was raised in Curriculum 2001 discussions, and debate needs to start in good time for the next curriculum standard. This paper provides a starting point for debate, by outlining a process by which principles and artifacts may be separated, and presents a sample curriculum to illustrate the possibilities. This sample curriculum has some positive points, though these positive points are incidental to the need to start debating the issue. Other models, with a less rigorous ordering of principles before artifacts, would still gain from making it clearer whether a specific concept was fundamental, or a property of a specific technology. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Measurement while drilling (MWD) techniques can provide a useful tool to aid drill and blast engineers in open cut mining. By avoiding time consuming tasks such as scan-lines and rock sample collection for laboratory tests, MWD techniques can not only save time but also improve the reliability of the blast design by providing the drill and blast engineer with the information specially tailored for use. While most mines use a standard blast pattern and charge per blasthole, based on a single rock factor for the entire bench or blast region, information derived from the MWD parameters can improve the blast design by providing more accurate rock properties for each individual blasthole. From this, decisions can be made on the most appropriate type and amount of explosive charge to place in a per blasthole or to optimise the inter-hole timing detonation time of different decks and blastholes. Where real-time calculations are feasible, the system could extend the present blast design even be used to determine the placement of subsequent holes towards a more appropriate blasthole pattern design like asymmetrical blasting.
Resumo:
Blasting has been the most frequently used method for rock breakage since black powder was first used to fragment rocks, more than two hundred years ago. This paper is an attempt to reassess standard design techniques used in blasting by providing an alternative approach to blast design. The new approach has been termed asymmetric blasting. Based on providing real time rock recognition through the capacity of measurement while drilling (MWD) techniques, asymmetric blasting is an approach to deal with rock properties as they occur in nature, i.e., randomly and asymmetrically spatially distributed. It is well accepted that performance of basic mining operations, such as excavation and crushing rely on a broken rock mass which has been pre conditioned by the blast. By pre-conditioned we mean well fragmented, sufficiently loose and with adequate muckpile profile. These muckpile characteristics affect loading and hauling [1]. The influence of blasting does not end there. Under the Mine to Mill paradigm, blasting has a significant leverage on downstream operations such as crushing and milling. There is a body of evidence that blasting affects mineral liberation [2]. Thus, the importance of blasting has increased from simply fragmenting and loosing the rock mass, to a broader role that encompasses many aspects of mining, which affects the cost of the end product. A new approach is proposed in this paper which facilitates this trend 'to treat non-homogeneous media (rock mass) in a non-homogeneous manner (an asymmetrical pattern) in order to achieve an optimal result (in terms of muckpile size distribution).' It is postulated there are no logical reasons (besides the current lack of means to infer rock mass properties in the blind zones of the bench and onsite precedents) for drilling a regular blast pattern over a rock mass that is inherently heterogeneous. Real and theoretical examples of such a method are presented.
Resumo:
Cropp and Gabric [Ecosystem adaptation: do ecosystems maximise resilience? Ecology. In press] used a simple phytoplanktonzooplankton-nutrient model and a genetic algorithm to determine the parameter values that would maximize the value of certain goal functions. These goal functions were to maximize biomass, maximize flux, maximize flux to biomass ratio, and maximize resilience. It was found that maximizing goal functions maximized resilience. The objective of this study was to investigate whether the Cropp and Gabric [Ecosystem adaptation: do ecosystems maximise resilience? Ecology. In press] result was indicative of a general ecosystem principle, or peculiar to the model and parameter ranges used. This study successfully replicated the Cropp and Gabric [Ecosystem adaptation: do ecosystems maximise resilience? Ecology. In press] experiment for a number of different model types, however, a different interpretation of the results is made. A new metric, concordance, was devised to describe the agreement between goal functions. It was found that resilience has the highest concordance of all goal functions trialled. for most model types. This implies that resilience offers a compromise between the established ecological goal functions. The parameter value range used is found to affect the parameter versus goal function relationships. Local maxima and minima affected the relationship between parameters and goal functions, and between goal functions. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
This paper delineates the development of a prototype hybrid knowledge-based system for the optimum design of liquid retaining structures by coupling the blackboard architecture, an expert system shell VISUAL RULE STUDIO and genetic algorithm (GA). Through custom-built interactive graphical user interfaces under a user-friendly environment, the user is directed throughout the design process, which includes preliminary design, load specification, model generation, finite element analysis, code compliance checking, and member sizing optimization. For structural optimization, GA is applied to the minimum cost design of structural systems with discrete reinforced concrete sections. The design of a typical example of the liquid retaining structure is illustrated. The results demonstrate extraordinarily converging speed as near-optimal solutions are acquired after merely exploration of a small portion of the search space. This system can act as a consultant to assist novice designers in the design of liquid retaining structures.
Resumo:
This paper describes a coupled knowledge-based system (KBS) for the design of liquid-retaining structures, which can handle both the symbolic knowledge processing based on engineering heuristics in the preliminary synthesis stage and the extensive numerical crunching involved in the detailed analysis stage. The prototype system is developed by employing blackboard architecture and a commercial shell VISUAL RULE STUDIO. Its present scope covers design of three types of liquid-retaining structures, namely, a rectangular shape with one compartment, a rectangular shape with two compartments and a circular shape. Through custom-built interactive graphical user interfaces, the user is directed throughout the design process, which includes preliminary design, load specification, model generation, finite element analysis, code compliance checking and member sizing optimization. It is also integrated with various relational databases that provide the system with sectional properties, moment and shear coefficients and final member details. This system can act as a consultant to assist novice designers in the design of liquid-retaining structures with increase in efficiency and optimization of design output and automated record keeping. The design of a typical example of the liquid-retaining structure is also illustrated. (C) 2003 Elsevier B.V All rights reserved.
Resumo:
In small, cylindrical gradient coils consisting of a single layer of wires, the limiting factor in achieving large magnetic field gradients is the rapid increase in coil resistance with efficiency. This behavior results from the decrease in the maximum usable wire diameter as the number of turns is increased. By adopting a multilayer design in which the coil wires are allowed to spread out into multiple layers wound at increasing radii, a more favorable scaling of resistance with efficiency is achieved, thus allowing the design of more powerful gradient coils with acceptable resistance values. By extending the theory used to design standard cylindrical gradient coils, mathematical expressions have been developed that allow the design of multilayer coils. These expressions have previously been applied to the design of a four-layer z-gradient coil. As a further development, the equations have now been modified to allow the design of multilayer transverse gradient coils. The variation in coil performance with the number of layers employed has been investigated for coils of a size suitable for use in NMR microscopy, and the effect of constructing the coil using wires or cuts in a continuous conducting surface has also been assessed. We find that at fixed resistance a small wire-wound two-layer coil offers an increase in efficiency of a factor of about 1.5 compared with a single-layer coil. In addition, a two-layer coil of 10-mm inner diameter has been designed and built. This coil had an efficiency of 0.41 Tm-1 A(-1), a resistance of 0.96 +/- 0.01 Omega, and an inductance of 22.3 +/- 0.2 muH. The coil produces a gradient that deviates from linearity by less than 5% over a central cylindrical region of interest of height and length 6.2 mm. (C) 2003 Wiley Periodicals, Inc.
Stability and simulation-based design of steel scaffolding without using the effective length method