791 resultados para Earthquake prediction.
Resumo:
Abstract: Asthma prevalence in children and adolescents in Spain is 10-17%. It is the most common chronic illness during childhood. Prevalence has been increasing over the last 40 years and there is considerable evidence that, among other factors, continued exposure to cigarette smoke results in asthma in children. No statistical or simulation model exist to forecast the evolution of childhood asthma in Europe. Such a model needs to incorporate the main risk factors that can be managed by medical authorities, such as tobacco (OR = 1.44), to establish how they affect the present generation of children. A simulation model using conditional probability and discrete event simulation for childhood asthma was developed and validated by simulating realistic scenario. The parameters used for the model (input data) were those found in the bibliography, especially those related to the incidence of smoking in Spain. We also used data from a panel of experts from the Hospital del Mar (Barcelona) related to actual evolution and asthma phenotypes. The results obtained from the simulation established a threshold of a 15-20% smoking population for a reduction in the prevalence of asthma. This is still far from the current level in Spain, where 24% of people smoke. We conclude that more effort must be made to combat smoking and other childhood asthma risk factors, in order to significantly reduce the number of cases. Once completed, this simulation methodology can realistically be used to forecast the evolution of childhood asthma as a function of variation in different risk factors.
Resumo:
The major objective of this research project was to use thermal analysis techniques in conjunction with x-ray analysis methods to identify and explain chemical reactions that promote aggregate related deterioration in portland cement concrete. Twenty-two different carbonate aggregate samples were subjected to a chemical testing scheme that included: • bulk chemistry (major, minor and selected trace elements) • bulk mineralogy (minor phases concentrated by acid extraction) • solid-solution in the major carbonate phases • crystallite size determinations for the major carbonate phases • a salt treatment study to evaluate the impact of deicer salts Test results from these different studies were then compared to information that had been obtained using thermogravimetric analysis techniques. Since many of the limestones and dolomites that were used in the study had extensive field service records it was possible to correlate many of the variables with service life. The results of this study have indicated that thermogravimetric analysis can play an important role in categorizing carbonate aggregates. In fact, with modern automated thermal analysis systems it should be possible to utilize such methods on a quality control basis. Strong correlations were found between several of the variables that were monitored in this study. In fact, several of the variables exhibited significant correlations to concrete service life. When the full data set was utilized (n = 18), the significant correlations to service life can be summarized as follows ( a = 5% level): • Correlation coefficient, r, = -0.73 for premature TG loss versus service life. • Correlation coefficient, r, = 0.74 for relative crystallite size versus service life. • Correlation coefficient, r, = 0.53 for ASTM C666 durability factor versus service life. • Correlation coefficient, r, = -0.52 for acid-insoluble residue versus service life. Separation of the carbonate aggregates into their mineralogical categories (i.e., calcites and dolomites) tended to increase the correlation coefficients for some specific variables (r sometimes approached 0.90); however, the reliability of such correlations was questionable because of the small number of samples that were present in this study.
Resumo:
The objective of this work was to determine the viability equation constants for cottonseed and to detect the occurrence and depletion of hardseededness. Three seedlots of Brazilian cultivars IAC-19 and IAC-20 were tested, using 12 moisture content levels, ranging from 2.2 to 21.7% and three storage temperatures, 40, 50 and 65ºC. Seed moisture content level was reached from the initial value (around 8.8%) either by rehydration, in a closed container, or by drying in desiccators containing silica gel, both at 20ºC. Twelve seed subsamples for each moisture content/temperature treatment were sealed in laminated aluminium-foil packets and stored in incubators at those temperatures, until complete survival curves were obtained. Seed equilibrium relative humidity was recorded. Hardseededness was detected at moisture content levels below 6% and its releasing was achieved either naturally, during storage period, or artificially through seed coat removal. The viability equation quantified the response of seed longevity to storage environment well with K E = 9.240, C W = 5.190, C H = 0.03965 and C Q = 0.000426. The lower limit estimated for application of this equation at 65ºC was 3.6% moisture content.
Resumo:
Activity monitors based on accelerometry are used to predict the speed and energy cost of walking at 0% slope, but not at other inclinations. Parallel measurements of body accelerations and altitude variation were studied to determine whether walking speed prediction could be improved. Fourteen subjects walked twice along a 1.3 km circuit with substantial slope variations (-17% to +17%). The parameters recorded were body acceleration using a uni-axial accelerometer, altitude variation using differential barometry, and walking speed using satellite positioning (DGPS). Linear regressions were calculated between acceleration and walking speed, and between acceleration/altitude and walking speed. These predictive models, calculated using the data from the first circuit run, were used to predict speed during the second circuit. Finally the predicted velocity was compared with the measured one. The result was that acceleration alone failed to predict speed (mean r = 0.4). Adding altitude variation improved the prediction (mean r = 0.7). With regard to the altitude/acceleration-speed relationship, substantial inter-individual variation was found. It is concluded that accelerometry, combined with altitude measurement, can assess position variations of humans provided inter-individual variation is taken into account. It is also confirmed that DGPS can be used for outdoor walking speed measurements, opening up new perspectives in the field of biomechanics.
Resumo:
Substantial collective flow is observed in collisions between lead nuclei at Large Hadron Collider (LHC) as evidenced by the azimuthal correlations in the transverse momentum distributions of the produced particles. Our calculations indicate that the global v1-flow, which at RHIC peaked at negative rapidities (named third flow component or antiflow), now at LHC is going to turn toward forward rapidities (to the same side and direction as the projectile residue). Potentially this can provide a sensitive barometer to estimate the pressure and transport properties of the quark-gluon plasma. Our calculations also take into account the initial state center-of-mass rapidity fluctuations, and demonstrate that these are crucial for v1 simulations. In order to better study the transverse momentum flow dependence we suggest a new"symmetrized" vS1(pt) function, and we also propose a new method to disentangle global v1 flow from the contribution generated by the random fluctuations in the initial state. This will enhance the possibilities of studying the collective Global v1 flow both at the STAR Beam Energy Scan program and at LHC.
Resumo:
Genotype-based algorithms are valuable tools for the identification of patients eligible for CCR5 inhibitors administration in clinical practice. Among the available methods, geno2pheno[coreceptor] (G2P) is the most used online tool for tropism prediction. This study was conceived to assess if the combination of G2P prediction with V3 peptide net charge (NC) value could improve the accuracy of tropism prediction. A total of 172 V3 bulk sequences from 143 patients were analyzed by G2P and NC values. A phenotypic assay was performed by cloning the complete env gene and tropism determination was assessed on U87_CCR5(+)/CXCR4(+) cells. Sequences were stratified according to the agreement between NC values and G2P results. Of sequences predicted as X4 by G2P, 61% showed NC values higher than 5; similarly, 76% of sequences predicted as R5 by G2P had NC values below 4. Sequences with NC values between 4 and 5 were associated with different G2P predictions: 65% of samples were predicted as R5-tropic and 35% of sequences as X4-tropic. Sequences identified as X4 by NC value had at least one positive residue at positions known to be involved in tropism prediction and positive residues in position 32. These data supported the hypothesis that NC values between 4 and 5 could be associated with the presence of dual/mixed-tropic (DM) variants. The phenotypic assay performed on a subset of sequences confirmed the tropism prediction for concordant sequences and showed that NC values between 4 and 5 are associated with DM tropism. These results suggest that the combination of G2P and NC could increase the accuracy of tropism prediction. A more reliable identification of X4 variants would be useful for better selecting candidates for Maraviroc (MVC) administration, but also as a predictive marker in coreceptor switching, strongly associated with the phase of infection.
Resumo:
Validation is the main bottleneck preventing theadoption of many medical image processing algorithms inthe clinical practice. In the classical approach,a-posteriori analysis is performed based on someobjective metrics. In this work, a different approachbased on Petri Nets (PN) is proposed. The basic ideaconsists in predicting the accuracy that will result froma given processing based on the characterization of thesources of inaccuracy of the system. Here we propose aproof of concept in the scenario of a diffusion imaginganalysis pipeline. A PN is built after the detection ofthe possible sources of inaccuracy. By integrating thefirst qualitative insights based on the PN withquantitative measures, it is possible to optimize the PNitself, to predict the inaccuracy of the system in adifferent setting. Results show that the proposed modelprovides a good prediction performance and suggests theoptimal processing approach.
Resumo:
BACKGROUND: Prognostic models have been developed to predict survival of patients with newly diagnosed glioblastoma (GBM). To improve predictions, models should be updated with information at the recurrence. We performed a pooled analysis of European Organization for Research and Treatment of Cancer (EORTC) trials on recurrent glioblastoma to validate existing clinical prognostic factors, identify new markers, and derive new predictions for overall survival (OS) and progression free survival (PFS).¦METHODS: Data from 300 patients with recurrent GBM recruited in eight phase I or II trials conducted by the EORTC Brain Tumour Group were used to evaluate patient's age, sex, World Health Organisation (WHO) performance status (PS), presence of neurological deficits, disease history, use of steroids or anti-epileptics and disease characteristics to predict PFS and OS. Prognostic calculators were developed in patients initially treated by chemoradiation with temozolomide.¦RESULTS: Poor PS and more than one target lesion had a significant negative prognostic impact for both PFS and OS. Patients with large tumours measured by the maximum diameter of the largest lesion (⩾42mm) and treated with steroids at baseline had shorter OS. Tumours with predominant frontal location had better survival. Age and sex did not show independent prognostic values for PFS or OS.¦CONCLUSIONS: This analysis confirms performance status but not age as a major prognostic factor for PFS and OS in recurrent GBM. Patients with multiple and large lesions have an increased risk of death. With these data prognostic calculators with confidence intervals for both medians and fixed time probabilities of survival were derived.
Resumo:
BACKGROUND: Cytomegalovirus (CMV) disease remains an important problem in solid-organ transplant recipients, with the greatest risk among donor CMV-seropositive, recipient-seronegative (D(+)/R(-)) patients. CMV-specific cell-mediated immunity may be able to predict which patients will develop CMV disease. METHODS: We prospectively included D(+)/R(-) patients who received antiviral prophylaxis. We used the Quantiferon-CMV assay to measure interferon-γ levels following in vitro stimulation with CMV antigens. The test was performed at the end of prophylaxis and 1 and 2 months later. The primary outcome was the incidence of CMV disease at 12 months after transplant. We calculated positive and negative predictive values of the assay for protection from CMV disease. RESULTS: Overall, 28 of 127 (22%) patients developed CMV disease. Of 124 evaluable patients, 31 (25%) had a positive result, 81 (65.3%) had a negative result, and 12 (9.7%) had an indeterminate result (negative mitogen and CMV antigen) with the Quantiferon-CMV assay. At 12 months, patients with a positive result had a subsequent lower incidence of CMV disease than patients with a negative and an indeterminate result (6.4% vs 22.2% vs 58.3%, respectively; P < .001). Positive and negative predictive values of the assay for protection from CMV disease were 0.90 (95% confidence interval [CI], .74-.98) and 0.27 (95% CI, .18-.37), respectively. CONCLUSIONS: This assay may be useful to predict if patients are at low, intermediate, or high risk for the development of subsequent CMV disease after prophylaxis. CLINICAL TRIALS REGISTRATION: NCT00817908.
Resumo:
This report is concerned with the prediction of the long-time creep and shrinkage behavior of concrete. It is divided into three main areas. l. The development of general prediction methods that can be used by a design engineer when specific experimental data are not available. 2. The development of prediction methods based on experimental data. These methods take advantage of equations developed in item l, and can be used to accurately predict creep and shrinkage after only 28 days of data collection. 3. Experimental verification of items l and 2, and the development of specific prediction equations for four sand-lightweight aggregate concretes tested in the experimental program. The general prediction equations and methods are developed in Chapter II. Standard Equations to estimate the creep of normal weight concrete (Eq. 9), sand-lightweight concrete (Eq. 12), and lightweight concrete (Eq. 15) are recommended. These equations are developed for standard conditions (see Sec. 2. 1) and correction factors required to convert creep coefficients obtained from equations 9, 12, and 15 to valid predictions for other conditions are given in Equations 17 through 23. The correction factors are shown graphically in Figs. 6 through 13. Similar equations and methods are developed for the prediction of the shrinkage of moist cured normal weight concrete (Eq. 30}, moist cured sand-lightweight concrete (Eq. 33}, and moist cured lightweight concrete (Eq. 36). For steam cured concrete the equations are Eq. 42 for normal weight concrete, and Eq. 45 for lightweight concrete. Correction factors are given in Equations 47 through 52 and Figs., 18 through 24. Chapter III summarizes and illustrates, by examples, the prediction methods developed in Chapter II. Chapters IV and V describe an experimental program in which specific prediction equations are developed for concretes made with Haydite manufactured by Hydraulic Press Brick Co. (Eqs. 53 and 54}, Haydite manufactured by Buildex Inc. (Eqs. 55 and 56), Haydite manufactured by The Cater-Waters Corp. (Eqs. 57 and 58}, and Idealite manufactured by Idealite Co. (Eqs. 59 and 60). General prediction equations are also developed from the data obtained in the experimental program (Eqs. 61 and 62) and are compared to similar equations developed in Chapter II. Creep and Shrinkage prediction methods based on 28 day experimental data are developed in Chapter VI. The methods are verified by comparing predicted and measured values of the long-time creep and shrinkage of specimens tested at the University of Iowa (see Chapters IV and V) and elsewhere. The accuracy obtained is shown to be superior to other similar methods available to the design engineer.
Resumo:
This paper addresses primary care physicians, cardiologists, internists, angiologists and doctors desirous of improving vascular risk prediction in primary care. Many cardiovascular risk factors act aggressively on the arterial wall and result in atherosclerosis and atherothrombosis. Cardiovascular prognosis derived from ultrasound imaging is, however, excellent in subjects without formation of intimal thickening or atheromas. Since ultrasound visualises the arterial wall directly, the information derived from the arterial wall may add independent incremental information to the knowledge of risk derived from global risk assessment. This paper provides an overview on plaque imaging for vascular risk prediction in two parts: Part 1: Carotid IMT is frequently used as a surrogate marker for outcome in intervention studies addressing rather large cohorts of subjects. Carotid IMT as a risk prediction tool for the prevention of acute myocardial infarction and stroke has been extensively studied in many patients since 1987, and has yielded incremental hazard ratios for these cardiovascular events independently of established cardiovascular risk factors. However, carotid IMT measurements are not used uniformly and therefore still lack widely accepted standardisation. Hence, at an individual, practicebased level, carotid IMT is not recommended as a risk assessment tool. The total plaque area of the carotid arteries (TPA) is a measure of the global plaque burden within both carotid arteries. It was recently shown in a large Norwegian cohort involving over 6000 subjects that TPA is a very good predictor for future myocardial infarction in women with an area under the curve (AUC) using a receiver operating curves (ROC) value of 0.73 (in men: 0.63). Further, the AUC for risk prediction is high both for vascular death in a vascular prevention clinic group (AUC 0.77) and fatal or nonfatal myocardial infarction in a true primary care group (AUC 0.79). Since TPA has acceptable reproducibility, allows calculation of posttest risk and is easily obtained at low cost, this risk assessment tool may come in for more widespread use in the future and also serve as a tool for atherosclerosis tracking and guidance for intensity of preventive therapy. However, more studies with TPA are needed. Part 2: Carotid and femoral plaque formation as detected by ultrasound offers a global view of the extent of atherosclerosis. Several prospective cohort studies have shown that cardiovascular risk prediction is greater for plaques than for carotid IMT. The number of arterial beds affected by significant atheromas may simply be added numerically to derive additional information on the risk of vascular events. A new atherosclerosis burden score (ABS) simply calculates the sum of carotid and femoral plaques encountered during ultrasound scanning. ABS correlates well and independently with the presence of coronary atherosclerosis and stenosis as measured by invasive coronary angiogram. However, the prognostic power of ABS as an independent marker of risk still needs to be elucidated in prospective studies. In summary, the large number of ways to measure atherosclerosis and related changes in human arteries by ultrasound indicates that this technology is not yet sufficiently perfected and needs more standardisation and workup on clearly defined outcome studies before it can be recommended as a practice-based additional risk modifier.