909 resultados para EXPLORATORY DATA ANALYSIS
Resumo:
Factor analysis as frequent technique for multivariate data inspection is widely used also for compositional data analysis. The usual way is to use a centered logratio (clr)transformation to obtain the random vector y of dimension D. The factor model istheny = Λf + e (1)with the factors f of dimension k & D, the error term e, and the loadings matrix Λ.Using the usual model assumptions (see, e.g., Basilevsky, 1994), the factor analysismodel (1) can be written asCov(y) = ΛΛT + ψ (2)where ψ = Cov(e) has a diagonal form. The diagonal elements of ψ as well as theloadings matrix Λ are estimated from an estimation of Cov(y).Given observed clr transformed data Y as realizations of the random vectory. Outliers or deviations from the idealized model assumptions of factor analysiscan severely effect the parameter estimation. As a way out, robust estimation ofthe covariance matrix of Y will lead to robust estimates of Λ and ψ in (2), seePison et al. (2003). Well known robust covariance estimators with good statisticalproperties, like the MCD or the S-estimators (see, e.g. Maronna et al., 2006), relyon a full-rank data matrix Y which is not the case for clr transformed data (see,e.g., Aitchison, 1986).The isometric logratio (ilr) transformation (Egozcue et al., 2003) solves thissingularity problem. The data matrix Y is transformed to a matrix Z by usingan orthonormal basis of lower dimension. Using the ilr transformed data, a robustcovariance matrix C(Z) can be estimated. The result can be back-transformed tothe clr space byC(Y ) = V C(Z)V Twhere the matrix V with orthonormal columns comes from the relation betweenthe clr and the ilr transformation. Now the parameters in the model (2) can beestimated (Basilevsky, 1994) and the results have a direct interpretation since thelinks to the original variables are still preserved.The above procedure will be applied to data from geochemistry. Our specialinterest is on comparing the results with those of Reimann et al. (2002) for the Kolaproject data
Resumo:
Several eco-toxicological studies have shown that insectivorous mammals, due to theirfeeding habits, easily accumulate high amounts of pollutants in relation to other mammal species. To assess the bio-accumulation levels of toxic metals and their in°uenceon essential metals, we quantified the concentration of 19 elements (Ca, K, Fe, B, P,S, Na, Al, Zn, Ba, Rb, Sr, Cu, Mn, Hg, Cd, Mo, Cr and Pb) in bones of 105 greaterwhite-toothed shrews (Crocidura russula) from a polluted (Ebro Delta) and a control(Medas Islands) area. Since chemical contents of a bio-indicator are mainly compositional data, conventional statistical analyses currently used in eco-toxicology can givemisleading results. Therefore, to improve the interpretation of the data obtained, weused statistical techniques for compositional data analysis to define groups of metalsand to evaluate the relationships between them, from an inter-population viewpoint.Hypothesis testing on the adequate balance-coordinates allow us to confirm intuitionbased hypothesis and some previous results. The main statistical goal was to test equalmeans of balance-coordinates for the two defined populations. After checking normality,one-way ANOVA or Mann-Whitney tests were carried out for the inter-group balances
Resumo:
We consider two fundamental properties in the analysis of two-way tables of positive data: the principle of distributional equivalence, one of the cornerstones of correspondence analysis of contingency tables, and the principle of subcompositional coherence, which forms the basis of compositional data analysis. For an analysis to be subcompositionally coherent, it suffices to analyse the ratios of the data values. The usual approach to dimension reduction in compositional data analysis is to perform principal component analysis on the logarithms of ratios, but this method does not obey the principle of distributional equivalence. We show that by introducing weights for the rows and columns, the method achieves this desirable property. This weighted log-ratio analysis is theoretically equivalent to spectral mapping , a multivariate method developed almost 30 years ago for displaying ratio-scale data from biological activity spectra. The close relationship between spectral mapping and correspondence analysis is also explained, as well as their connection with association modelling. The weighted log-ratio methodology is applied here to frequency data in linguistics and to chemical compositional data in archaeology.
Resumo:
Whether for investigative or intelligence aims, crime analysts often face up the necessity to analyse the spatiotemporal distribution of crimes or traces left by suspects. This article presents a visualisation methodology supporting recurrent practical analytical tasks such as the detection of crime series or the analysis of traces left by digital devices like mobile phone or GPS devices. The proposed approach has led to the development of a dedicated tool that has proven its effectiveness in real inquiries and intelligence practices. It supports a more fluent visual analysis of the collected data and may provide critical clues to support police operations as exemplified by the presented case studies.
Resumo:
Quantitative information from magnetic resonance imaging (MRI) may substantiate clinical findings and provide additional insight into the mechanism of clinical interventions in therapeutic stroke trials. The PERFORM study is exploring the efficacy of terutroban versus aspirin for secondary prevention in patients with a history of ischemic stroke. We report on the design of an exploratory longitudinal MRI follow-up study that was performed in a subgroup of the PERFORM trial. An international multi-centre longitudinal follow-up MRI study was designed for different MR systems employing safety and efficacy readouts: new T2 lesions, new DWI lesions, whole brain volume change, hippocampal volume change, changes in tissue microstructure as depicted by mean diffusivity and fractional anisotropy, vessel patency on MR angiography, and the presence of and development of new microbleeds. A total of 1,056 patients (men and women ≥ 55 years) were included. The data analysis included 3D reformation, image registration of different contrasts, tissue segmentation, and automated lesion detection. This large international multi-centre study demonstrates how new MRI readouts can be used to provide key information on the evolution of cerebral tissue lesions and within the macrovasculature after atherothrombotic stroke in a large sample of patients.
Resumo:
The Office of Special Investigations at Iowa Department of Transportation (DOT) collects FWD data on regular basis to evaluate pavement structural conditions. The primary objective of this study was to develop a fully-automated software system for rapid processing of the FWD data along with a user manual. The software system automatically reads the FWD raw data collected by the JILS-20 type FWD machine that Iowa DOT owns, processes and analyzes the collected data with the rapid prediction algorithms developed during the phase I study. This system smoothly integrates the FWD data analysis algorithms and the computer program being used to collect the pavement deflection data. This system can be used to assess pavement condition, estimate remaining pavement life, and eventually help assess pavement rehabilitation strategies by the Iowa DOT pavement management team. This report describes the developed software in detail and can also be used as a user-manual for conducting simulation studies and detailed analyses. *********************** Large File ***********************
Resumo:
Introduction. If we are to promote more patient-centred approaches in care delivery, we have to better characterize the situations in which being patient-centred is difficult to achieve. Data from professionals in health and social care are important because they are the people charged with operationalizing patient-centred care (PCC) in their daily practice. However, empirical accounts from frontline care providers are still lacking, and it is important to gather experiences not only from doctors but also from the other care providers. Indeed, experiences from different professions can help inform our understanding of patient care, which is expected to be both patient-centred and collaborative. Methods. This study was based on the following research question: What factors make the provision of PCC difficult to achieve? Sample and setting. A purposeful sampling technique was used, allowing for a series of choices about the participants and their professional affiliation. Because patient-centredness is the focus, 3 professions appeared to be of special interest: general internists, nurses and social workers. The study was undertaken in the General Internal Medicine Division of a teaching hospital located in a North American context. Data Collection. To answer the research question, a methodological approach based on a theory called phenomenology was chosen. Accordingly, semi-structured interviews were used since they generate understanding of the meanings different individuals have of their lived world. Interviews with 8 physicians, 10 nurses and 10 social workers were eventually conducted. Data analysis. An inductive thematic analysis was employed to make sense of the interview data. Results. The thematic analysis allowed identifying various types of challenges to PCC. Although most of the challenges were perceived by all three groups of professionals, they were perceived to a different degree across the professions, which likely reflected the scope of practice of each profession. The challenges and their distribution across the professions are illustrated in Table 1. Examples of challenges are provided in Table 2. Discussion. There is a tension between what is supposed to be done - what stands in the philosophy of patient -centredness - and what is currently done - the real life with all the challenges to PCC. According to some participants' accounts, PCC clearly risks becoming a mere illusion for health care professionals on which too great pressures are imposed.
Resumo:
Sport betting is a lucrative business for bookmakers, for the lucky (or wise) punters, but also for governments and for sport. While not new or even recent, the deviances linked to sport betting, primarily match-fixing, have gained increased media exposure in the past decade. This exploratory study is a qualitative content analysis of the press coverage of sport betting-related deviances in football in two countries (UK and France), using in each case two leading national publications over a period of five years. Data analysis indicates a mounting coverage of sport betting scandals, with teams, players and criminals increasingly framed as culprits, while authorities and federations primarily assume a positive role. As for the origin of sport betting deviances, French newspapers tend to blame the system (in an abstract way); British newspapers, in contrast, focus more on individual weaknesses, notably greed. This article contributed to the growing body of literature on the importance of these deviances and on the way they are perceived by sport organizations, legislators and the public at large.
Resumo:
In general, laboratory activities are costly in terms of time, space, and money. As such, the ability to provide realistically simulated laboratory data that enables students to practice data analysis techniques as a complementary activity would be expected to reduce these costs while opening up very interesting possibilities. In the present work, a novel methodology is presented for design of analytical chemistry instrumental analysis exercises that can be automatically personalized for each student and the results evaluated immediately. The proposed system provides each student with a different set of experimental data generated randomly while satisfying a set of constraints, rather than using data obtained from actual laboratory work. This allows the instructor to provide students with a set of practical problems to complement their regular laboratory work along with the corresponding feedback provided by the system's automatic evaluation process. To this end, the Goodle Grading Management System (GMS), an innovative web-based educational tool for automating the collection and assessment of practical exercises for engineering and scientific courses, was developed. The proposed methodology takes full advantage of the Goodle GMS fusion code architecture. The design of a particular exercise is provided ad hoc by the instructor and requires basic Matlab knowledge. The system has been employed with satisfactory results in several university courses. To demonstrate the automatic evaluation process, three exercises are presented in detail. The first exercise involves a linear regression analysis of data and the calculation of the quality parameters of an instrumental analysis method. The second and third exercises address two different comparison tests, a comparison test of the mean and a t-paired test.
Resumo:
Each year, the College of Nurses of Ontario (CNO) requires all registered nurses and registered practical nurses in Ontario to complete a Reflective Practice learning activity. In doing so, nurses are expected to perform a self- assessment, identify a practice problem or issue, create and implement a personal learning plan, and evaluate the learning and outcomes accomplished. The process and components of CNO's Reflective Practice program are very similar to an Action Learning activity. The purpose of this qualitative research was to explore the perceptions of 1 1 nurses who completed at least 1 Action Learning activity. Data analysis of their comments provided insight into their perceptions of the Action Learning experience, perceptions of the negative and positive characteristics of various activities within the Action Learning process, and perceptions of barriers or challenges within this experience. The author concluded that participants perceived their Action Learning activities to be a positive experience because the process focused on practice problems and issues, enhanced thinking about practice problems, and achieved practice-relevant outcomes. However, the results indicated that self-directed learning and journal writing were difficult activities for some participants, and some experienced negative emotional responses during reflection. The research concluded that barriers to implementation of Action Learning include a lack of understanding of the process and a perceived lack of support from employers.
Resumo:
Reliability analysis is a well established branch of statistics that deals with the statistical study of different aspects of lifetimes of a system of components. As we pointed out earlier that major part of the theory and applications in connection with reliability analysis were discussed based on the measures in terms of distribution function. In the beginning chapters of the thesis, we have described some attractive features of quantile functions and the relevance of its use in reliability analysis. Motivated by the works of Parzen (1979), Freimer et al. (1988) and Gilchrist (2000), who indicated the scope of quantile functions in reliability analysis and as a follow up of the systematic study in this connection by Nair and Sankaran (2009), in the present work we tried to extend their ideas to develop necessary theoretical framework for lifetime data analysis. In Chapter 1, we have given the relevance and scope of the study and a brief outline of the work we have carried out. Chapter 2 of this thesis is devoted to the presentation of various concepts and their brief reviews, which were useful for the discussions in the subsequent chapters .In the introduction of Chapter 4, we have pointed out the role of ageing concepts in reliability analysis and in identifying life distributions .In Chapter 6, we have studied the first two L-moments of residual life and their relevance in various applications of reliability analysis. We have shown that the first L-moment of residual function is equivalent to the vitality function, which have been widely discussed in the literature .In Chapter 7, we have defined percentile residual life in reversed time (RPRL) and derived its relationship with reversed hazard rate (RHR). We have discussed the characterization problem of RPRL and demonstrated with an example that the RPRL for given does not determine the distribution uniquely
Resumo:
Atmospheric surface boundary layer parameters vary anomalously in response to the occurrence of annular solar eclipse on 15th January 2010 over Cochin. It was the longest annular solar eclipse occurred over South India with high intensity. As it occurred during the noon hours, it is considered to be much more significant because of its effects in all the regions of atmosphere including ionosphere. Since the insolation is the main driving factor responsible for the anomalous changes occurred in the surface layer due to annular solar eclipse, occurred on 15th January 2010, that played very important role in understanding dynamics of the atmosphere during the eclipse period because of its coincidence with the noon time. The Sonic anemometer is able to give data of zonal, meridional and vertical wind as well as the air temperature at a temporal resolution of 1 s. Different surface boundary layer parameters and turbulent fluxes were computed by the application of eddy correlation technique using the high resolution station data. The surface boundary layer parameters that are computed using the sonic anemometer data during the period are momentum flux, sensible heat flux, turbulent kinetic energy, frictional velocity (u*), variance of temperature, variances of u, v and w wind. In order to compare the results, a control run has been done using the data of previous day as well as next day. It is noted that over the specified time period of annular solar eclipse, all the above stated surface boundary layer parameters vary anomalously when compared with the control run. From the observations we could note that momentum flux was 0.1 Nm 2 instead of the mean value 0.2 Nm-2 when there was eclipse. Sensible heat flux anomalously decreases to 50 Nm 2 instead of the mean value 200 Nm 2 at the time of solar eclipse. The turbulent kinetic energy decreases to 0.2 m2s 2 from the mean value 1 m2s 2. The frictional velocity value decreases to 0.05 ms 1 instead of the mean value 0.2 ms 1. The present study aimed at understanding the dynamics of surface layer in response to the annular solar eclipse over a tropical coastal station, occurred during the noon hours. Key words: annular solar eclipse, surface boundary layer, sonic anemometer
Resumo:
Most of economic literature has presented its analysis under the assumption of homogeneous capital stock. However, capital composition differs across countries. What has been the pattern of capital composition associated with World economies? We make an exploratory statistical analysis based on compositional data transformed by Aitchinson logratio transformations and we use tools for visualizing and measuring statistical estimators of association among the components. The goal is to detect distinctive patterns in the composition. As initial findings could be cited that: 1. Sectorial components behaved in a correlated way, building industries on one side and , in a less clear view, equipment industries on the other. 2. Full sample estimation shows a negative correlation between durable goods component and other buildings component and between transportation and building industries components. 3. Countries with zeros in some components are mainly low income countries at the bottom of the income category and behaved in a extreme way distorting main results observed in the full sample. 4. After removing these extreme cases, conclusions seem not very sensitive to the presence of another isolated cases
Resumo:
Several eco-toxicological studies have shown that insectivorous mammals, due to their feeding habits, easily accumulate high amounts of pollutants in relation to other mammal species. To assess the bio-accumulation levels of toxic metals and their in°uence on essential metals, we quantified the concentration of 19 elements (Ca, K, Fe, B, P, S, Na, Al, Zn, Ba, Rb, Sr, Cu, Mn, Hg, Cd, Mo, Cr and Pb) in bones of 105 greater white-toothed shrews (Crocidura russula) from a polluted (Ebro Delta) and a control (Medas Islands) area. Since chemical contents of a bio-indicator are mainly compositional data, conventional statistical analyses currently used in eco-toxicology can give misleading results. Therefore, to improve the interpretation of the data obtained, we used statistical techniques for compositional data analysis to define groups of metals and to evaluate the relationships between them, from an inter-population viewpoint. Hypothesis testing on the adequate balance-coordinates allow us to confirm intuition based hypothesis and some previous results. The main statistical goal was to test equal means of balance-coordinates for the two defined populations. After checking normality, one-way ANOVA or Mann-Whitney tests were carried out for the inter-group balances
Resumo:
Factor analysis as frequent technique for multivariate data inspection is widely used also for compositional data analysis. The usual way is to use a centered logratio (clr) transformation to obtain the random vector y of dimension D. The factor model is then y = Λf + e (1) with the factors f of dimension k < D, the error term e, and the loadings matrix Λ. Using the usual model assumptions (see, e.g., Basilevsky, 1994), the factor analysis model (1) can be written as Cov(y) = ΛΛT + ψ (2) where ψ = Cov(e) has a diagonal form. The diagonal elements of ψ as well as the loadings matrix Λ are estimated from an estimation of Cov(y). Given observed clr transformed data Y as realizations of the random vector y. Outliers or deviations from the idealized model assumptions of factor analysis can severely effect the parameter estimation. As a way out, robust estimation of the covariance matrix of Y will lead to robust estimates of Λ and ψ in (2), see Pison et al. (2003). Well known robust covariance estimators with good statistical properties, like the MCD or the S-estimators (see, e.g. Maronna et al., 2006), rely on a full-rank data matrix Y which is not the case for clr transformed data (see, e.g., Aitchison, 1986). The isometric logratio (ilr) transformation (Egozcue et al., 2003) solves this singularity problem. The data matrix Y is transformed to a matrix Z by using an orthonormal basis of lower dimension. Using the ilr transformed data, a robust covariance matrix C(Z) can be estimated. The result can be back-transformed to the clr space by C(Y ) = V C(Z)V T where the matrix V with orthonormal columns comes from the relation between the clr and the ilr transformation. Now the parameters in the model (2) can be estimated (Basilevsky, 1994) and the results have a direct interpretation since the links to the original variables are still preserved. The above procedure will be applied to data from geochemistry. Our special interest is on comparing the results with those of Reimann et al. (2002) for the Kola project data